J. S. University, Shikohabad

B.Tech (CSE)

All Semesters

(Four years program)

Scheme

Å

Syllabus

[Effective from the Session 2021-22]

STUDY AND EVALUATION SCHEME FOR B.TECH. (COMMON TO ALL BRANCHES).

SEM	IESTER – F	IRST										
S.No.	Subject	Name of Subject	Pe W	eriod Teek	s Pe	r	Evaluation Scheme					
	Code		L	Т	Р	Cr.	Sessional	End Exam	Total	Duration		
		THE	DRY	SU SU	JBJI	ECT						
1	BTAS101	Engineering Physics	3	1	0	4	50	100	150	3		
2	BTAS103	Engineering Mathematics-I	3	1	0	4	50	100	150	3		
3	BTEE101	Basic Electrical Engineering	3	0	0	3	50	100	150	3		
4	BTCS101	Programming for Problem Solving	3	0	0	3	50	100	150	3		
5	BTMC101	AI For Engineering	2	1	0	2	25	25	50	2		
6	BTNC101	Soft Skill - I	2	1	0	NC	25	25	50	2		
		PRACTICAL/D	RA	WI	NG	SUBJ	IECTS					
7	BTAS151	Engineering Physics Lab	-	-	2	1	25	25	50	3		
8	BTEE151	Basic Electrical Engineering Lab	-	-	2	1	25	25	50	3		
9	BTCS151	Programming for Problem Solving	-	-	2	1	25	25	50	3		

STUDY AND EVALUATION SCHEME FOR B.TECH. (COMMON TO ALL BRANCHES).

- -

2

1

20

25

25

Grand

Total

50

900

3

Engineering Graphics & Design

10

BTCE151

Lab

SEM	IESTER – S	ECOND										
S.No.	Subject	Name of Subject	Pe W	eriod eek	ls Pe	r	Evaluation Scheme					
	Code	5	L	Т	Р	Cr.	Sessional	End Exam	Total	Duration		
		THE	ORY	Z SU	JBJ	ЕСТ						
1	BTAS202	Engineering Chemistry	3	1	0	4	50	100	150	3		
2	BTAS203	Engineering Mathematics-II	3	1	0	4	50	100	150	3		
3	BTEC201	Emerging Domain in Electronics Engineering	3	0	0	3	50	100	150	3		
4	BTME201	Fundamentals of Mechanical Engineering & Mechatronics	3	0	0	3	50	100	150	3		
5	BTMC202	Emerging Technology for Engineering	2	1	0	2	25	25	50	2		
6	BTNC201	Soft Skill - II	2	1	0	NC	25	25	50	2		
		PRACTICA/I)RA	WI	NG	SUI	BJECTS					
7	BTAS252	Engineering Chemistry Lab	-	-	2	1	25	25	50	3		
8	BTEC251	Electronics Engineering Lab	-	-	2	1	25	25	50	3		
9	BTAS254	English Language Lab	-	-	2	1	25	25	50	3		
10	BTWS251	Mechanical Workshop Lab	-	-	2	1	25	25	50	3		
					20)		Grand Total	900			

SEMESTER- III

Sl. No.	Subject Codes	Subject	Periods Evaluation Scheme		End Semester		Total	Credit					
			L	Т	Р	CT	TA	Total	PS	TE	PE		
1	BTAS- 302	Engineering Science Course/Maths IV	3	1	0	30	20	50		100		150	4
2	BTAS-	Technical Communication/Universal	2	1	0	30	20	50		100		150	3
	301	Human values	3	0	0								
3	BTCS- 301	Data Structure	3	1	0	30	20	50		100		150	4
4	BTCS- 302	Computer Organization and Architecture	3	1	0	30	20	50		100		150	4
5	BTCS- 303	Discrete Structures & Theory of Logic	3	0	0	30	20	50		100		150	3
6	BTCS- 351P	Data Structures Using C Lab	0	0	2				25		25	50	1
7	BTCS- 352P	Computer Organization Lab	0	0	2				25		25	50	1
8	BTCS- 353P	Discrete Structure & Logic Lab	0	0	2				25		25	50	1
9	BTCS- 354	Mini Project or Internship Assessment*	0	0	2			50				50	1
10	BTMC- 301	Computer System Security/Python Programming	2	0	0	15	10	25		50			0
		Total										950	22
*'	The Mini	Project or internship (3-4 weeks) c assesse	ond d du	ucte iring	ed du g III	uring seme	sumn ster.	her brea	k afte	er II se	meste	r and wi	ill be

SEMESTER- IV

Sl. No.	Subject Codes	Subject	Pe	eriod	ls	Evaluation Scheme End Semestr					nd ester	Total	Credit
			L	Т	Р	СТ	TA	Total	PS	TE	PE		
1		Maths IV/Engg. Science Course	3	1	0	30	20	50		100		150	4
2		Universal Human Values/ Technical Communication	3	0	0	30	20	50		100		150	3
			2	1	0								
3		Operating Systems	3	0	0	30	20	50		100		150	3
4		Theory of Automata and Formal Languages	3	1	0	30	20	50		100		150	4
5		Microprocessor	3	1	0	30	20	50		100		150	4
6		Operating Systems Lab	0	0	2				25		25	50	1
7		Microprocessor Lab	0	0	2				25		25	50	1
8		Python Language Programming Lab	0	0	2				25		25	50	1
9		Python Programming/Computer System Security	2	0	0	15	10	25		50			0
		Total					I			1		900	21
*T	he Mini Pro	ject or internship (3-4 weeks asser) coi ssed	nduc duri	ted ng l	during V ser	g sum nester	mer brea	ık after	: III sei	mester	r and wi	ll be

SEMESTER- V

Sl. No.	Subject	Subject	Periods Evaluation Scheme				eme	End Semester		Total	Credit		
	Codes		L	T	Р	СТ	TA	Total	PS	ТЕ	PE		
1		Database Management System	3	1	0	30	20	50		100		150	4
2		Compiler Design	3	1	0	30	20	50		100		150	4
3		Design and Analysis of Algorithm	3	1	0	30	20	50		100		150	4
4	Deptt. Elective-I	Departmental Elective-I	3	0	0	30	20	50		100		150	3
5	Deptt. Elective- II	Departmental Elective-II	3	0	0	30	20	50		100		150	3
6		Database Management System Lab	0	0	2				25		25	50	1
7		Compiler Design Lab	0	0	2				25		25	50	1
8		Design and Analysis of Algorithm Lab	0	0	2				25		25	50	1
9		Mini Project or Internship Assessment*	0	0	2				50			50	1
10		Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			
		Total	17	3	8							950	22
*Th	e Mini Proj	ect or internship (4 weeks) co assess	onduo ed du	cted uring	duri g V s	ing su semes	imme ster.	r break	aftei	: IV s	emest	ter and	will be

SEMESTER- VI

Sl. No.	Subject	Subject	Pe	Periods Evaluation Scheme			End Semester		Total	Credit			
	Codes		L	T	Р	СТ	TA	Total	PS	TE	PE		
1		Software Engineering	3	1	0	30	20	50		100		150	4
2		Web Technology	3	1	0	30	20	50		100		150	4
3		Computer Networks	3	1	0	30	20	50		100		150	4
4	Deptt. Elective- III	Departmental Elective-III	3	0	0	30	20	50		100		150	3
5		Open Elective-I [Annexure - B(iv)]	3	0	0	30	20	50		100		150	3
6		Software Engineering Lab	0	0	2				25		25	50	1
7		Web Technology Lab	0	0	2				25		25	50	1
8		Computer Networks Lab	0	0	2				25		25	50	1
9		Constitution of India, Law and Engineering / Indian Tradition, Culture and Society	2	0	0	15	10	25		50			
		Total	0	3	6							900	21

Departmental Elective-I

- 1. Data Analytics
- 2. Web Designing
- 3. Computer Graphics
- 4. Object Oriented System Design

Departmental Elective-II

- 1. Machine Learning Techniques
- 2. Application of Soft Computing
- 3. Augmented & Virtual Reality
- 4. Human Computer Interface

Departmental Elective-III

- 1. Big Data
- 2. Image Processing
- 3. Real Time Systems
- 4. Data Compression

SEMESTER- VII

Sl. No.	Subject	Subject	Pe	erio	ds	Evaluation Scheme		End Semester		Total	Credit		
	Codes		L	Т	Р	СТ	TA	Total	PS	ТЕ	PE		
1		HSMC -1 / HSMC-2	3	0	0	30	20	50		100		150	3
2		Departmental Elective- IV	3	0	0	30	20	50		100		150	3
3		Departmental Elective- V	3	0	0	30	20	50		100		150	3
4		Open Elective-II	3	0	0	30	20	50		100		150	3
5		The Department may conduct one Lab of either of the two Electives (4 or 5) based on the elective chosen for the curriculum. The Department shall on its own prepare complete list of practical for the Lab and arrange for proper setup and conduct accordingly.	0	0	2				25		25	50	1
6		Mini Project or Internship Assessment*	0	0	2				50			50	1
7		Project	0	0	8				150			150	4
		Total	12	0	12							850	18
	*The Mini semester a	Project or internship (4 - 6 and will be assessed during	5 we VII	eks) sen) con neste	ducte r.	d dur	ing sur	nmer	break	after	VI	

SEMESTER- VIII

Sl. No.	Subject	Subject	Pe	erio	ds	Eva	Evaluation Scheme				End Semester		Credit
	Codes		L	Т	Р	СТ	TA	Total	PS	ТЕ	PE		
1		HSMC-1 [#] /HSMC-2 [#]	3	0	0	30	20	50		100		150	3
2		Open Elective-III	3	0	0	30	20	50		100		150	3
3		Open Elective-IV	3	0	0	30	20	50		100		150	3
4		Project 1	0	0	18				100		300	400	9
		Total	9	0	18							850	18

Departmental Elective-IV

- 1. Artificial Intelligence
- 2. Natural language processing
- 3. High Performance Computing
- 4. Cryptography and Network Security
- 5. Design & Development of Applications
- 6. Software Testing
- 7. Distributed Systems

Departmental Elective-V

- 1. Deep Learning
- 2. Service Oriented Architecture
- 3. Quantum Computing
- 4. Mobile Computing
- 5. Internet of Things
- 6. Cloud Computing
- 7. Blockchain Architecture Design

STUDY AND EVALUATION SCHEME FOR **B.TECH. (COMMON TO ALL BRANCHES).**

DIF	AS101	ENGINEERING PHYSICS	3L:1T:0P	4 Credits
Course	e Outcoi	nes: At the end of this course students will demons	trate the ability to:	
Jour 50	1	To solve the classical and wave mechanics problems	trate the uplity to:	
	2	To develop the understanding of laws of thermodyn	amics and their	
	2.	application in various processes		
	3	To formulate and solve the engineering problems or	Flectromagnetism &	
	5.	FlectromagneticFieldTheory		
	4	To aware of limits of classical physics & to apply the	ideas in solving the	
		problems in their parentstreams.		
Unit		Tonics		Locturos
	Dolotiv	Topics	artial frames Calilaan	Lectures o
1	transfor	suc Mechanics: Frame of reference, merital & non-in	of special theory of	0
	rolotivit	Lorentz transformations Longth contraction Ti	of special theory of	
	addition	theorem Variation of mass with velocity Einstein"s	mass energy relation	
	Relativi	stic relation between energy and	mass energy relation,	
	moment	um Massless particle		
П	Flectro	magnetic Field Theory: Continuity equation	for current density	8
	Displace	ement current Modifying equation for the curl of ma	onetic field to satisfy	0
	continui	ty equation Maxwell's equations in vacuum and	in non conducting	
	medium	Energy in an electromagnetic field Poynting vector s	and Poynting theorem	
	Plane e	lectromagnetic ways in vacuum and their transv	erse nature Relation	
	hetween	electric and magnetic fields of an electromagnetic	cise nature. Relation	
	wave F	nergy and momentum carried by electromagnetic way	es Resultant pressure	
	Skin der	th.	is, Resultant pressure,	
III	Ouantu	m Mechanics: Black body radiation. Stefan's law. V	Vien"s law, Ravleigh-	8
	Jeans la	and Planck's law Wave particle duality	Matter waves Time-	_
	depende	and time-independent Schrodinger wave equation	Born interpretation	
	of way	e function Solution to stationary state Schrodinge	r wave equation for	
	one-Din	pensional particle in a box Compton	a wave equation for	
	effect	iensional particle in a box, compton		
IV	Wave	Optics: Coherent sources. Interference in uniform	and wedge shaped	8
	thin	films Necessity of extended sources Nex	vton's Rings and its	_
	applicat	ions. Fraunhoffer diffraction at single slit and at	double slit, absent	
	spectra.	Diffraction grating. Spectra with grating.	Dispersive power.	
	Resolvi	ng power of grating. Rayleigh"s criterion of resolution	on.	
	Resolvi	ng power of grating.	,	
V	Fibre	Optics & Laser: Optics: Introduction to fibr	e optics, Acceptance	8
	angle,	Numerical aperture, Normalized frequency, Q	Classification of fibre,	
	Attenua	tion and Dispersion in optical fibres. Laser: Abs	orption of radiation.	
	Spontan	eous and stimulated emission of	· ····································	
	1 1			
	radiation	n, Einstein"s coefficients, Population inversion. Variou	s levels of Laser.	

- 1. Concepts of Modern Physics Aurthur Beiser (McGraw Hill)
- 2. Introduction to Special Theory of Relativity- Robert Resnick (Wiley)
- 3. Optics Brijlal & Subramanian (S. Chand)

- 4. Engineering Physics: Theory and Practical- Katiyar and Pandey (Wiley India)
- 5. Applied Physics for Engineers- Neeraj Mehta (PHI Learning, New)
- 6. Engineering Physics-Malik HK and Singh AK (McGrawHill)

COURSE OBJECTIVE:

The objective of this course is to familiarize the graduate engineers with techniques in calculus, multivariate analysis, vector calculus and linear algebra. It aims to equip the students with standard concepts and tools from intermediate to advanced level that will enable them to tackle more advanced level of mathematics and applications that they would find useful in their disciplines.

The students will learn:

- To apply the knowledge of differential calculus in the field of engineering.
- To deal with functions of several variables that is essential in optimizing the results of reallife problems.
- Multiple integral tools to deal with engineering problems involving centre ofgravity,volume etc.
- To deal with vector calculus that is required in different branches of Engineering tograduate engineers.
- The essential tools of matrices and linear algebra, Eigen values and diagonalization inaComprehensive manner are required.

BTAS	S103	ENGINEERING MATHMATICS I	3L:1T:0P	4 Credits
Course	Outcor	mes: At the end of this course students will demonstrate the	e ability to:	
CO 1	Reme equati	mber the concept of matrices and apply for solving linearsinions.	nultaneous	
CO 2	Under apply	rstand the concept of limit, continuity and differentiability a in the study of Rolle,s, Lagrange,s and Cauchy mean value	nd theorem and Lei	bnitz
CO 3	Identi maxir	fy the application of partial differentiation and apply foreval na, minima, series and Jacobians.	uating	
CO 4	Illustr volun	rate the working methods of multiple integral and apply forfine, centre of mass and centre of gravity.	nding area,	
CO 5	Reme planes integr	ember the concept of vector and apply for directional derivat s. Also evaluate line, surface and volume rals.	ives,tangent and	normal
Unit		Topics		Lectures
Ι	Matrice Matrice transfor equatio Eigen	res: Types of Matrices: Symmetric, Skew-symmetric a es; Complex Matrices, Inverse and Rank of matrix us rmations, Rank-Nullity theorem; System of linear ons, Characteristic equation, Cayley-Hamilton Theorem and values and eigenvectors; Diagonalisation of a Matrix	ing elementary its application,	8
II	Different different value the and its one and	ential Calculus- I: Introduction to limits, contin- ntiability, Rolle's Theorem, Lagrange's Mean value theorem heorem, Successive Differentiation (n th order derivatives), Le application, Envelope of family of d two parameter, Curve tracing: Cartesian and Polar co-ordin	nuity and andCauchy mear eibnitz theorem nates	8
III	Differe homog variabl variabl	ential Calculus-II: Partial derivatives, Total derivative, Eule eneous functions, Taylor and Maclaurin's theorems for a tes, Maxima and Minima of functions of several es, Lagrange Method of Multipliers, Jacobians, Approximation	r's Theorem for function of two on of errors	8
IV	Multiv Change volume	ariable Calculus-I: Multiple integration: Double integral, e of order of integration, Change of variables, Applicat es, Center of mass and center of gravity (Constant and variable)	Triple integral, ion: Areas and e densities)	8
V	Vector Curl an Vector Diverg their ap	Calculus: Vector identities (without proof), Vector different ad Divergence and their Physical interpretation, Directional de Integration: Line integral, Surface integral, Volume integral ence theorem, Green's theorem and Stoke's theorem (without opplications	tiation: Gradient erivatives. , Gauss's at proof) and	8

Text Books:

- 1. B. V. Ramana, Higher Engineering Mathematics, McGraw-Hill Publishing Company Ltd.,2008.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publisher, 2005.
- 3. R K. Jain & S R K. Iyenger, Advance Engineering Mathematics, Narosa Publishing House2002.

Reference Books:

- 1. E. Kreyszig, Advance Engineering Mathematics, John Wiley & Sons, 2005.
- 2. Peter V. O'Neil, Advance Engineering Mathematics, Thomson (Cengage) Learning, 2007.

- 3. Maurice D. Weir, Joel Hass, Frank R. Giordano, Thomas, Calculus, Eleventh Edition, Pearson.
- 4. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.
- 5. Veerarajan T., Engineering Mathematics for first year, McGraw-Hill, New Delhi, 2008.
- 6. Ray Wylie C and Louis C Barret, Advanced Engineering Mathematics, McGraw-Hill;Sixth Edition.
- 7. P. Sivaramakrishna Das and C. Vijayakumari, Engineering Mathematics, 1st Edition, Pearson Education.
- 8. Advanced Engineering Mathematics. Chandrika Prasad, Reena Garg, 2018.
- 9. Engineering Mathemathics I. Reena Garg, 2018.

BTEE	BASIC ELECTRICAL ENGINEERING	3L:0T:0P	3 Credits
	Course Outcome (CO)		
CO 1	Remember the concept of matrices and apply for solving li	nearsimultaneous	
01	equations.		
coc	Understand the concept of limit, continuity and differentia	bility and	
CO 2	apply in the study of Rolle, s, Lagrange, s and Cauchy mea theorems.	n valuetheorem and Leib	nitz
CO 3	Identify the application of partial differentiation and apply	forevaluating	
	maxima, minima, series and Jacobians.	ly forfinding area	
CO 4	volume, centre of mass and centre of gravity.	iy formung area,	
	Remember the concept of vector and apply for directional	derivatives, tangent and no	ormal
CO 5	planes. Also evaluate line, surface and volume		
	integrals.		
Unit	Topics		Lectures
Ι	DC Circuits : Electrical circuit elements (R, L and C),	Concept of active and	8
	passive elements, voltage and current sources, concept	of linearity and linear	
	network, unilateral and bilateral elements, Kirchnoff's la	WS, LOOP	
	The route theorem Norton theorem	superposition meorem,	
П	Steady- State Analysis of Single Phase AC Circui	ts: Representation of	8
	Sinusoidal waveforms – Average and effective values, F	orm and peak factors.	0
	Concept of phasors, phasor representation of sinusoidal	varying voltage and	
	current.		
	Analysis of single phase AC Circuits consisting of R	L, C, RL, RC, RLC	
	combinations (Series and Parallel), Apparent, active &	reactive power, Power	
	factor, power factor improvement. Concept of Resonance	in series &	
	parallel circuits, bandwidth and quality factor. Three p	hase balanced circuits,	
	voltage and current relations in star and delta connections.		-
111	Transformers: Magnetic materials, BH characteristics, 16	deal and practical	8
	Auto transformer, equivalent circuit, losses in transformers, regul	ation and efficiency.	
IV	Flactrical machines: DC machines: Dringinla & Cor	estruction Types EME	Q
I V	equation of generator and torque equation of motor ar	plications of DC motors	0
	(simple numerical problems)	producions of DC motors	
	Three Phase Induction Motor: Principle & Construction	on, Types, Slip- torque	
	characteristics, Applications (Numerical problems relate	d to slip only) Single	
	Phase Induction motor: Principle of operation and intr	oduction to methods of	
	starting, applications.		
	Three Phase Synchronous Machines: Principle of ope	ration of alternator and	
	synchronous motor and their applications.		
V	Electrical Installations: Components of LT Switchgea	r: Switch Fuse Unit	8
	(SFU), MCB, ELCB, MCCB, Types of Wires and C	ables, Importance of	
	earning. Types of Batteries, Important characteristics for	Batteries. Elementary	
	backup		
	ouckup.		

Text Book:

1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", McGraw Hill.

- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.
- 3. Ritu Sahdev, "Basic Electrical Engineering", Khanna Publishing House.

4. S. Singh, P.V. Prasad, "Electrical Engineering: Concepts and Applications" Cengage

Reference Books:

- 1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press.
- 3. V. D. Toro, "Electrical Engineering Fundamentals", Pearson India.

Spoken Tutorial (MOOCs): Open Source Spice circuit Simulator Software 1. AC DC Circuit Analysis using NgSpice, Open Source Spice circuit Simulator Software (http://spoken-tutorial.org)

Course Outcomes: At the end of this course students will demonstrate the ability to:

- 1. Apply the concepts of KVL/KCL and network theorems in solving DC circuits.
- 2. Analyze the steady state behavior of single phase and three phase AC electrical circuits.
- 3. Identify the application areas of a single phase two winding transformer as well as an auto transformer and calculate their efficiency. Also identify the connections of a three phase transformer.
- 4. Illustrate the working principles of induction motor, synchronous machine as well as DC machine and employ them in different area of applications.
- 5. Describe the components of low voltage electrical installations and perform elementary calculations for energy consumption.

BTCS	101PROGRAMMING FOR PROBLEM SOLVING3L:0T:0P	3 Credits
Course	Dutcomes: At the end of this course students will be able to:	
	 To develop simple algorithms for arithmetic and logical problems. To translate the algorithms to programs & execution (in C languag To implement conditional branching, iteration and recursion. To decompose a problem into functions and synthesize a complete programusingdivide and conquer approach. To use arrays, pointers and structures to develop algorithms and programs 	e).
Unit	Topics	Lectures
1	 computer system: Memory, processor, I/O Devices, storage, operating system, Concept of assembler, compiler, interpreter, loader and linker. Idea of Algorithm: Representation of Algorithm, Flowchart, Pseudo code with examples, From algorithms to programs, source code. Programming Basics: Structure of C program: writing and executing the first C program, Syntax and logical errors in compilation, object and executable code Components of C language: Standard I/O in C, Fundamental data types, Variables and memory locations, Storageclasses. 	0
Π	Arithmetic expressions & Conditional Branching: Arithmetic expressions and precedence: Operators and expression using numeric and relational operators, mixed operands, type conversion, logical operators, bit operations, assignment operator, operator precedence and associatively. Conditional Branching: Applying if and switch statements, nesting if and else use of break and default with switch.	, 8
III	Loops & Functions: Iteration and loops: use of while, do while and for loops, multiple loop variables, use of break and continuestatements. Functions: Introduction, types of functions, functions with array, passing parameters to functions, call by value, call by reference, recursive functions.	8
IV	 Arrays & Basic Algorithms: Arrays: Array notation and representation, manipulating array elements, using multi dimensional arrays. Character arrays and strings, Structure, union, enumerated data types, Array of structures, Passing arrays to functions. Basic Algorithms: Searching &Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, Notion of order o complexity. 	8 f
V	Pointer& File Handling: Pointers: Introduction, declaration, applications, Introduction to dynamic memory allocation (malloc, calloc, realloc, free), Use of pointers in self-referential structures, notion of linked list (no implementation) File handling: File I/O functions, Standard C preprocessors, defining and calling macros command-line arguments	8

Text Books:

- 1. Schum"s Outline of Programming with C by Byron Gottfried, McGraw-Hill
- 2. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
- 3. Computer Basics and C Programming by V.Rajaraman , PHI Learning Pvt. Limited, 2015.
- 4. Computer Concepts and Programming in C, R.S. Salaria, Khanna Publishing House
- 5. Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill
- 6. Computer Science- A Structured Programming Approach Using C, by Behrouz A. Forouzan, Richard F. Gilberg, Thomson, Third Edition , Cengage Learning 2007.
- 7. Let Us C By Yashwant P. Kanetkar.
- 8. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.
- 9. Programming in C by Kochan Stephen G. Pearson Education 2015.
- 10. Computer Concepts and Programming in C by D.S. Yadav and Rajeev Khanna, New Age International Publication.
- 11. Computer Concepts and Programming by Anami, Angadi and Manvi, PHI Publication.
- 12. Computer Concepts and Programming in C by Vikas Gupta, Wiley India Publication
- 13. Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication
- 14. Problem Solving and Programming in C, R.S. Salaria, Khanna Publishing House.

BTMC102	1	ARTIFICAL INTELLIGENCE FOR ENGINEERS	2L:1T:0P	2 Credit							
The studer	nts will be ab	le to	-								
CO1	Understand	the evolution and various approaches of AI									
CO2	Understand	data storage, processing, visualization, and its us	ein regression,	clustering etc.							
CO3	Understand	Jnderstand natural language processing and chatbots									
CO4	Understand	Understand the concepts of neural networks									
CO5	Understand	the concepts of face, object, speech recognition a	androbots								
Course		Topics									
Unit 1		An overview to AI									
1.1		The evolution of AI to the present									
1.2		Various approaches to AI									
1.3		What should all engineers know about AI?									
1.4		Other emerging technologies									
1.5		AI and ethical concerns									
Unit 2		Data & Algorithms									
2.1		History Of Data									
2.2		Data Storage And Importance of Data and its A	cquisition								
2.3		The Stages of data processing									
2.4		Data Visualization									
2.5		Regression, Prediction & Classification									
2.6		Clustering & Recommender Systems									
Unit 3		Natural Language Processing									
3.1		Speech recognition									
3.2		Natural language understanding									
3.3		Natural language generation									
3.4		Chatbots									
3.5		Machine Translation									
Unit 4		Artificial Neural Networks									
4.1		Deep Learning									
4.2		Recurrent Neural Networks									
4.3		Convolutional Neural Networks									
4.4		The Universal Approximation Theorem									
4.5		Generative Adversarial Networks									
Unit 5		Applications									
5.1		Image and face recognition									
5.2		Object recognition									
5.3		Speech Recognition besides Computer Vision									
5.4		Robots									
5.5		Applications									

Reference Books:

- 1. Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, Prentice Hall
- 2. Artificial Intelligence by Kevin Knight, Elaine Rich, Shivashankar B. Nair, Publisher : McGrawHill
- 3. Data Mining: Concepts and Techniques by Jiawei Han, Micheline Kamber, Jian Pei, Publisher: Elsevier Science.
- 4. Speech & Language Processing by Dan Jurafsky, Publisher : Pearson Education
- 5. Neural Networks and Deep Learning A Textbook by Charu C. Aggarwal, Publisher: SpringerInternational Publishing
- 6. Introduction to Artificial Intelligence By Rajendra Akerkar, Publisher : PHI Learning

BTNC101 SOFT SKILLS-I

2L:1T:0P

Course Outcome:

Unit 1- Students will be enabled to understand the correct usage of grammar.

Unit 2- Students will **apply** the fundamental inputs of communication skills in making speech delivery, individual conference, and group communication.

Unit 3-Students will **evaluate** the impact of interpersonal communication on their performance as a professional and in obtaining professional excellence at the workplace.

Unit 4-Skills and techniques of persuasion and negotiation would **enhance** the level of students at multifariousadministrative and managerial platforms.

Unit 5-Student will be able to **equip** with basics of communication skills and will **apply** it for practical andoral purposes by being honed up in presentation skills and voice-dynamics.

UNIT I- Basics of Applied Grammar and usage

Tenses: Part of Speech, Active & Passive Voice, Articles, Subject-verb agreement, Antonyms, Synonyms, Prefix and Suffix, Narration, Conditional sentences, Concord, Tag questions, punctuation marks.

UNIT II- Presentation and Interaction Skills

Speech Delivery, Interjecting: Objectives& Methodology; Group Discussion: Objectives & Methods; Theme Presentation: Methods; Argumentative skills: Pattern and Ingredients; Debate & Discussion: Unity, Coherence & Emphasis. Public Speaking: Audience Analysis: Approach and Style. Interviews: Types; Focus & Objectives.

UNIT III- Interpersonal Communication Skills

Features: Methods; Principles; Requisites; Team- work; Skills: Empathy, Emotional Intelligence, empathy and listening skills. Time Management; Attitude; Responsibility. Leadership qualities: Integrity; Values; Trust; Self- Confidence & Courage; Communication and Networking; Speed reading; Problem Solving & Trouble- Shooting

UNIT IV- Persuasion and Negotiation Skills

Definition; Understanding Attitude, Beliefs, Values and Behavior; The process of Persuasion: Analysis of Audience; Classification of Audience; Egoistic and Non-Egoistic; Specific Techniques for Specific Audience; Skills of Persuasion, Steps to Persuasion/Influence, Negotiation: Definition; Process of Negotiation: Characteristics;Qualities of good negotiator; Approaches to Negotiation.

UNIT V- Communication Skills

Introduction to oral communication, Nuances & Modes of Speech Delivery, Public speaking: confidence, clarity, and fluency, Non-verbal Communication: Kinesics, Paralinguistic features of Voice-Dynamics, Proxemics, Chronemics, and Presentation Strategies: planning, preparation, organization, delivery.

Prescribed Books:

- 1. Technical Communication, (Second Ed.); O.U.P., Meenakshi Raman & S.Sharma New Delhi, 2011
- 2. Business Communication for Managers, Payal Mehra, Pearson, Delhi, 2012.

- 3. **Personality Development,** Harold R. Wallace et. al, Cengage Learning India Pvt. Ltd; New Delhi 2006
- 4. **Practical Communication** by L.U.B. Pandey; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, Delhi.2013,
- 5. **Personality Development & Soft Skills,** Barun K.Mitra, Oxford University Press, New Delhi, 2012.
- 6. Public Speaking, William S. Pfeiffer, Pearson, Delhi, 2012.
- 7. Human Values, A.N. Tripathi, New Age International Pvt. Ltd. Publishers New Delhi ,2005

BTAS151	PHYSICS LAB	0L:0T:2P	1 Credit

Course Outcomes:

- 1. To determine the wavelength of sodium light by Newton"s ringexperiment
- 2. To determine the wavelength of sodium light with the help ofFresnel"sbi-prism
- 3. To determine the variation of magnetic field with the distance along theaxisof a current carrying coil and estimate the radius of the coil.
- 4. To draw hysteresis (B-H curve) of a specimen in the form of a transformerand to determine its hysteresis loss.

SUGGESTIVE LIST OF EXPERIMENTS:

Group A

- 1. To determine the wavelength of sodium light by Newton"s ring experiment.
- 2. To determine the wavelength of different spectral lines of mercury light usingplanetransmission grating.
- 3. To determine the specific rotation of cane sugar solution using polarimeter.
- 4. To determine the focal length of the combination of two lenses separated byadistance and verify the formula for the focal length of combination of lenses
- 5. To measure attenuation in an optical fiber.
- 6. To determine the wavelength of He-Ne laser light using single slit diffraction.
- 7. To study the polarization of light using He-Ne laser light.
- 8. To determine the wavelength of sodium light with the help of Fresnel"s biprism.
- 9. To determine the coefficient of viscosity of a given liquid.
- 10. To determine the value of acceleration due to gravity (g) using compound pendulum.

Group B

- 1. To determine the energy band gap of a given semiconductor material.
- To study Hall Effect and determine Hall coefficient, carrier density and mobility of agiven semiconductor material using Hall effect setup.
- 3. To determine the variation of magnetic field with the distance along the axis of acurrent carrying coil and estimate the radius of the coil.
- 4. To verify Stefan's law by electric method.
- 5. To determine resistance per unit length and specific resistance of a givenresistanceusing Carey Foster's Bridge.
- 6. To study the resonance condition of a series LCR circuit.
- 7. To determine the electrochemical equivalent (ECE) of copper.
- 8. To calibrate the given ammeter and voltmeter by potentiometer.

- 9. To draw hysteresis (B-H curve) of a specimen in the form of a transformer andtodetermine its hysteresis loss.
- 10. To measure high resistance by leakage method.

List of Experiments: Any ten experiments (at least four from each group) with virtual link

	Group A	Virtual Lab Link	Alternate Lab Link
1	To determine the wavelength of sodium light by Newton's ring experiment.	https://vlab.amrita.edu/?sub=1 &brch=189∼=335&cnt=1	http://vlabs.iitb.ac.in/vlabs- dev/labs/mit_bootcamp/engg_physics /labs/exp1/simulation/simulator4.htm l?medium=1
2	To determine the wavelength of different spectral lines of mercury light using plane transmission grating.	http://vlab.amrita.edu/?sub=1 &brch=281∼=334&cnt=1	
3	To determine the specific rotation of cane sugar solution using polarimeter	-	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics-basics/labs/cane- sugar-rotation-iitk/simulation.html
4	To determine the focal length of the combination of two lenses separated by a distance and verify the formula for the Focal length of combination of lenses.		http://vlabs.iitb.ac.in/vlabs- dev/labs/physics-basics/labs/focal- length-measurement- iitk/simulation.html
5	To measure attenuation in an optical fiber.	http://vlab.amrita.edu/index.ph p?sub=59&brch=269∼=13 69&cnt=2873	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics- basics/labs/numerical-aperture- measurement-iitk/simulation.html
6	To determine the wavelength of He-Ne laser light using single slit diffraction.	http://vlab.amrita.edu/index.ph p/index.php?sub=1&brch=189 ∼=334&cnt=1	https://youtu.be/0qIN2qHCvvs (Laser diffraction grating)
7	To study the polarization of light using He-Ne laser light.		http://vlabs.iitb.ac.in/vlabs- dev/labs/physics-basics/labs/he-ne- laser-polarization- iitk/simulation.html
8	To determine the wavelength of sodium light with the help of Fresnel's bi- prism	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics- basics/labs/fresnel-biprism- iitk/simulation.html	-
9	To determine the coefficient of viscosity of a given liquid.	https://amrita.olabs.edu.in/?su b=1&brch=5∼=225&cnt= 2	
10	To determine the value of acceleration due to gravity (g) using compound pendulum.	http://vlab.amrita.edu/?sub=1 &brch=280∼=210&cnt=2	
	Group B		
1	To determine the energy band gap of a given semiconductor material.	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics- basics/labs/energy-band-gap- iitk/simulation.html	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics-basics/labs/energy- band-gap-iitk/simulation.html
2	To study Hall effect and determine Hall coefficient, carrier density and mobility of a given semiconductor material using Hall effect setup.	https://vlab.amrita.edu/?sub=1 &brch=282∼=879&cnt=1	<u>https://youtu.be/IUugrqMOY7E (Hall Effect)</u>
3	To determine the variation of magnetic field with the distance along the axis of a current carrying coil and estimate the radius of the coil.	http://vlab.amrita.edu/?sub=1 &brch=192∼=972&cnt=1	https://youtu.be/v2B0QyW8XJ0 (Variation of Magnetic Field along the axis of circular coil carrying current)

4	To verify Stefan's law by electric method	http://vlabs.iitb.ac.in/vlabs- dev/vlab_bootcamp/bootcamp /vlabs_recbanda/labs/exp1/ind ex.html	https://youtu.be/qyFQ31s-bAw(Stefans law verification)
5	To determine resistance per unit length and specific resistance of a given resistance using Carey Foster's Bridge.	https://vlab.amrita.edu/?sub=1 &brch=192∼=346&cnt=1	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics-basics/labs/carey- foster-bridge-iitk/simulation.html
6	To study the resonance condition of a series LCR circuit.	https://vlab.amrita.edu/?sub=1 &brch=75∼=330&cnt=1	
7	To determine the electrochemical equivalent (ECE) of copper.	http://learnphysics- dhruv.blogspot.com/2015/03/c opper-voltameter-to- determine-electro.html	https://youtu.be/drV2nbDjR1k (ECEof Copper experiment)
8	To calibrate the given ammeter and voltmeter by potentiometer.		
9	To draw hysteresis (B-H curve) of a specimen in the form of a transformer and to determine its hysteresis loss.	-	
10	To measure high resistance by leakage method	http://vlabs.iitb.ac.in/vlabs- dev/labs/physics- basics/labs/carey-foster- bridge-iitk/simulation.html	

Reference Books

- 1. Practical Physics- K. K. Dey & B. N. Dutta (Kalyani Publishers New Delhi)
- 2. Engineering Physics-Theory and Practical- Katiyar & Pandey (Wiley India)
- 3. Engineering Physics Practical- S K Gupta (KrishnaPrakashan Meerut)

BTEE151	BASIC ELECTRICAL ENGINEERING LAB	0L:0T:2P	1 Credit

Course Outcomes: At the end of this course students will demonstrate the ability to:

- 1. Conduct experiments illustrating the application of KVL/KCL and network theorems to DCelectrical circuits.
- Demonstrate the behaviour of AC circuits connected to single phase AC supply and measurepowerin single phase as well as three phase electrical circuits.
- 3. Perform experiment illustrating BH curve of magnetic materials.
- 4. Calculate efficiency of a single phase transformer and DC machine.
- 5. Perform experiments on speed measurement and reversal of direction of three phase inductionmotor and Identify the type of DC and AC machines based on their construction.

SUGGESTIVE LIST OF EXPERIMENTS:

(A) Hardware based experiments

- 1. Verification of Kirchhoff"s laws.
- 2. Verification of Superposition and Thevenin Theorem.
- 3. Measurement of power and power factor in a single phase ac series inductive circuit andstudyimprovement of power factor using capacitor
- 4. Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.
- 5. Connection and measurement of power consumption of a fluorescent lamp (tube light).
- 6. Measurement of power in 3- phase circuit by two wattmeter method and determination of its power factor for star as well as delta connected load.
- 7. Determination of parameters of ac single phase series RLC circuit.
- 8. To observe the B-H loop of a ferromagnetic material in CRO.
- 9. Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single phasetransformer.
- 10. Determination of efficiency of a dc shunt motor by load test.
- 11. To study running and speed reversal of a three phase induction motor and record speed inbothdirections.
- 12. Demonstration of cut-out sections of machines: dc machine, three phase inductionmachine, single phase induction machine and synchronous machine.

(B) Experiments available on virtual lab

1. Kirchhoff"s laws.

Virtual lab link: <u>http://vlab.amrita.edu/?sub=3&brch=75&sim=217&cnt=2</u>

2. Thevenin Theorem.

Virtual lab link: <u>https://vlab.amrita.edu/?sub=1&brch=75&sim=313&cnt=1</u>

- 3. RLC series resonance.
- Virtual lab link: https://vlab.amrita.edu/?sub=1&brch=75&sim=330&cnt=1
 - 4. Measurement of power in 3- phase circuit by two wattmeter method and determination of tspower factor for star as well as delta connected load.
- Virtual lab link: http://vp-dei.vlabs.ac.in/Dreamweaver/measurement.html
- 5. Determination of parameters of ac single phase series RLC circuit.
- Virtual lab link: <u>https://vlab.amrita.edu/?sub=1&brch=75&sim=332&cnt=1</u>
 - 6. To observe the B-H loop of a ferromagnetic material in CRO.
- Virtual lab link: https://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=2
 - Determination of the efficiency of a dc motor by loss summation method(Swinburne'stest).Virtual lab link: <u>http://emiitr.vlabs.ac.in/exp5/index.php?section=Theory</u>

BT	CS151	PROGRAMMING FOR PROBLEM SOLVING	0L:0T:2P	1 Credit						
	BTCS	S151- Programming for Problem Solving Lab								
Course Ou	itcome (CO)								
At the end	of cours	e, the student will be able to:								
	Able to	implement the algorithms and draw flowcharts for sol	ving							
CO 1	Mathematical and Engineering problems.									
CO 2	Demons concept	strate an understanding of computer programming langues.	lage							
CO 3	Ability interpre usage.	to design and develop Computer programs, analyzes, a ts the concept of pointers, declarations, initialization, o	and operationson po	pintersand their						
CO 4	Able to processi	define data types and use them in simple data ing applications also he/she must be able to use thecor	a acept of array of a contract of a contra	fstructures.						
CO 5	Develop needed	o confidence for self education and ability for life-long for Computer language.	learning							
LabNo.	Expt.	Program								
LAB 1	1	Write a program to calculate the area of triangle using b)(s-c)	g formula at=√	s(s-a)(s-						
	2	Basic salary of an employee is input through the keyb basic salary while the HRA is 15% of the basic salary deducted at the rate of 10% of the gross salary (BS+E Program to calculate the Net Salary.	ooard. The DA y. Provident Fu DA+HRA).	is 25% of the nd is						
	3	Write a program to determine the roots of quadratic e	equation.							
	4	Write a program to find the largest of three numbers	using nested if	else.						
	5	 Write a program to receive marks of physics, chemistic check its eligibility for course if a) Marks of physics > 40 b) Marks of chemistry > 50 c) Marks of math's > 60 d) Total of physics & math's marks > 150or e) Total of three subjects marks > 200 	try & maths fro	om user&						
	6	write a program to find the value of y for a particular input by user if $n=1$ y=ax%b if $n=2$ y=ax2+b2if n=3 y=a-bx if $n=4$ y=a+x/b	value of n. Th	ie a, x,b, n 18						
	7	Write a program to construct a Fibonacci series upto	n terms.							
	8	Write a program to find whether the number is Arms	trong number.							
	9 10	Write a program to generate sum of series 1!+2!+3!+ Write a program to find the sum of following series 1 Xn/n!	n -X1/1!+X2/2!-	!						

antarad
Jentereu
ato
ieto
l.
~ n
011.
olav
ng
0
re
itis
•
like

	32	Write a program to remove all the blank space from the string & print it, also count the no of characters.
	33	Write a program to store the following string "zero", "one" "five". Print the no in words, given in figure as 3205.
LAB 8	34	Write a program to compare two given dates. To store a date uses a structure that contains three members namely day, month and year. If thedates are equal then display message equal otherwise unequal.
	35	Define a structure that can describe a hotel. It should have the member that includes the name, address, grade, room charge and number of rooms. Write a function to print out hotel of given grade in order of room charges.
	36	Define a structure called cricket with player name, team name, batting average, for 50 players & 5 teams. Print team wise list contains names ofplayer with their batting average.
LAB 9	37	Write a c program to copy & count the character content of one file saysa.txt to another file b.txt.
	38	Write a program to take 10 integers from file and write square of these integer in other file.
	39	Write a program to read number from file and then write all 'odd' numberto file ODD.txt & all even to file EVEN.txt.
	40	Write a program to print all the prime number, between 1 to 100 in fileprime.txt.
	41	Write the following C program using pointer:a) To sort the list of numbers through pointerb) To reverse the string through pointer.
LAB 10	42	Write a program to find the largest no among 20 integers array using dynamic memory allocation.
	43	Using Dynamic Memory Allocation, Write a program to find the transpose of given matrix.
	44	Write a program to find the factorial of given number using command line argument.
	45	Write a program to find the sum of digits of a 5 digit number using command line argument.

Note:

- a) The Instructor may add/delete/modify/tune experiments, wherever he/she feels inajustified manner
- **b**) It is also suggested that open source tools should be preferred to conduct the lab.Some open source online compiler to conduct the C lab are as follows:
- https://www.jdoodle.com/c-online-compiler/
- https://www.tutorialspoint.com/compile_c_online.php
- https://www.programiz.com/c-programming/online-compiler/
- https://www.hackerrank.com/

Name of the Lab	Name of the Experiment				
	Numerical Representation				
	Beauty of Numbers				
	More on Numbers				
	Factorials				
Duchlam Cabina Lab	String Operations	-			
Problem Solving Lab	Recursion				
	Advanced Arithmatic				
	Searching and Sorting				
	Permutation				
	Sequences				

BTCS151- Programming for Problem Solving Lab: Mapping with Virtual Lab

BTCE1	ENGINEERING GRAPHICS AND DESIGN LAB 0L:0T:2P 1 Cre	dits
Course (utcomes: At the end of this course students will demonstrate the ability to:	
	 Understanding of the visual aspects of engineering design Understanding of engineering graphics standards and solid modelling Effective communication through graphics Applying modern engineering tools necessary for engineering practice Appling computer-aided geometric design Analysis of Isometric views Creating working drawings 	
Unit	Topics	Lectures
I I S i	troduction to Engineering Drawing, Orthographic Projections: Principles of Engineering raphics and their significance, usage of Drawing instruments, lettering, Scales –Plain and Diagonal rales. Principles of Orthographic Projections – Conventions – Projections of Points and Lines clined to both planes; Projections of planes inclined Planes – Auxiliary Planes	8
II S as	ojections and Sections of Regular Solids: Sections in lined to both the Planes – Auxiliary Views; mple annotation, dimensioning and scale. Floor plans the include: windows, doors and fixtures such WC, Both, sink, shower, etc. Prism, Cylinder, Pyramid, Cone–Auxiliary Vies: Development of rfaces of Right Regular Solids – Prism, Pyramid, Cylinder and Cone.	8
III	ometric Projections: Principles of Isometric projection – Isometric Scale, Isometric Views, onventions; Isometric Views of lines, Planes Simple and compound Solids; Conversion of Isometric ews to Orthographic Views and Vice- versa, Conversions.	8
	Omputer Graphics: Listing the computer technologies the impact on graphical communication, emonstration knowledge of the theory of CAD software [such as: The Menu System, Tollbars tandard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, osshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The ommand Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, lect and erase objects: Isometric Views of lines, Planes, Simple and compound Solids]; t up of the drawing page and the printer, including scale settings, Setting up of units and drawing mits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic nstraints, Snap to objects manually and automatically; Producing drawings by using various	8
c L I I I I S S (V T V S	ordinate input entry methods to draw straight lines, Applying various ways of drawing circles: oplying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, yers to create drawings, Create, edit and use customized layers; Changing line lengths through odifying existing lines (extend/lengthen); Printing documents to pater using the print command: thographic projection techniques; Drawing sectional views of composite right regular geometric lids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design AD) software modelling of parts and assemblies. Parametric and non-parametric solid, surface, and reframe models. Part editing and two- dimensional documentation of models. Planar projection eory, including sketching of perspective, isometric, Multiview, auxiliary, and section views. Spatial sualization exercises Dimensioning idelines, tolerancing techniques; dimensioning and scale multi views of dwelling.	
V I c a s f f c c	emonstration of a simple team design project: Geometry and topology of engineered mponents: creation of engineering models and their presentation in standard 2D blueprintform and 3D wire-frame and shaded solids; meshed topologies for engineering analysis andtool-path neration for component manufacture; geometric dimensioning and tolerancing;Use of solid- odelling software for creating associative models at the component andassembly levels; floor ans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying lour coding according to building drawing practice; Drawing sectional evation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).	8

Text Books:

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R. (2014), Engineering Drawing, Charotar Publishing House.
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, PearsonEducation
- 3. Agrawal B. & Agrawal C.M. (2012), Engineering Graphics, McGraw Publication
- 4. Engineering Graphics & Design, A.P. Gautam & Pradeep Jain, Khanna Publishing House
- 5. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers.(Corresponding set of) CAD Software Theory and User Manuals.

B.TECH. (COMPUTER SCIENCE AND ENGINEERING) THIRD SEMESTER (DETAILED SYLLABUS)

DATA STRUCTURE

			Course	e Outco	me (CC))				Blo	om's Kn	owledge	Level (]	KL)
			At t	he end	of cours	e , the s	tudent	will be	able to	understa	nd			
CO 1	Describe how arrays, linked lists, stacks, queues, trees, and graphs are represented in memory, used by the algorithms and their common applications.												су,	
CO 2	Discu	Discuss the computational efficiency of the sorting and searching algorithms.												
CO 3	Imple	ementati	ion of T	rees and	d Graph	s and pe	erform	various	operati	ons on th	ese data	structure		
CO 4	Unde remo	rstandir val of re	ng the co	oncept o	of recurs	sion, app	plicatio	on of rec	ursion a	and its in	plement	ation and	-	
CO 5	Ident solve	ify the a a real w	alternati vorld pr	ve impl oblem.	ementat	ions of	data sti	ructures	with re	spect to i	ts perfor	mance to		
Course		-	-	-	Prog	ramm	e Outo	come (1	PO)				PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO2	3	3	3	2	2	-	-	-	-	3	3	3	3	3
CO3	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO4	3	3	3	3	3	-	-	-	-	3	3	3	3	3
CO5	3	3	3	3	3	-	-	-	-	2	3	3	3	3
РО														
Target	3	3	3	2.8	2.4	-	-	-	-	2.8	3	3	3	3

DETAILED SYLLABUS

Unit	Topic	Proposed
		Lecture
Ι	Introduction: Basic Terminology, Elementary Data Organization, Built in Data Types in C. Algorithm, Efficiency of an Algorithm, Time and Space Complexity, Asymptotic notations: Big Oh, Big Theta and Big Omega, Time-Space trade-off. Abstract Data Types (ADT) Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Array Application of arrays, Sparse Matrices and their representations. Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition Subtraction & Multiplications of Single variable & Two variables Polynomial.	08
Π	Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search, Fibonacci numbers, and Hanoi towers. Tradeoffs between iteration and recursion. Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue and Priority Queue.	08
III	Searching: Concept of Searching, Sequential search, Index Sequential Search, Binary Search. Concept of Hashing & Collision resolution Techniques used in Hashing. Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Merge Sort, Heap Sort and Radix Sort.	08
IV	Graphs: Terminology used with Graph, Data Structure for Graph Representations: Adjacency Matrices, Adjacency List, Adjacency. Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Transitive Closure and Shortest Path algorithm: Warshal Algorithm and Dijikstra Algorithm.	08
V	Trees: Basic terminology used with Tree, Binary Trees, Binary Tree Representation: Array Representation and Pointer(Linked List) Representation, Binary Search Tree, Strictly Binary Tree, Complete Binary Tree . A Extended Binary Trees, Tree Traversal algorithms: Inorder, Preorder and Postorder, Constructing Binary Tree from given Tree Traversal, Operation of Insertation , Deletion, Searching & Modification of data in Binary Search . Threaded Binary trees, Traversing Threaded Binary trees. Huffman coding using Binary Tree. Concept & Basic Operations for AVL Tree , B Tree & Binary Heaps	08
Text bo	ooks:	
1.	Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein, "Data Structures Using C and C++",	
2.	PHI Learning Private Limited, Delhi India	
3.	Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publications Pvt Ltd Delhi India.	
4.	Lipschutz, "Data Structures" Schaum's Outline Series, Tata McGraw-hill Education (India) Pvt. Ltd.	
5.	Thareja, "Data Structure Using C" Oxford Higher Education.	
6.	AK Sharma, "Data Structure Using C", Pearson Education India.	
7.	Kajesh K. Shukla, "Data Structure Using C and C++" Wiley Dreamtech Publication.	
8.	Michael I. Goodrich, Roberto Tamassia, David M. Mount "Data Structures and Algorithms in C++", Wile	y India.
9.	P. S. Desnpandey, "C and Data structure", Wiley Dreamtech Publication.	
10.	K. Kruse etai, "Data Structures and Program Design in C", Pearson Education.	
11.	DerZuss, AT. Data structures, Theory and Practice, Academic Press.	
12.	Jean Faul membley and Faul G. Sorenson, An introduction to Data Structures with applications", MCGI	aw ⊓III.
13.	Auani Diozuek Data Structures and Algorithm In Java, Cengage Learning	

Course Outcome (CO) Bloom's Knowledge Leve														el (KL)	
					At the	end of course, th	e studer	nt will be	able to	underst	and				
CO 1	1 Study of the basic structure and operation of a digital computer system.														
CO 2	Anal	lysis o	f the	design	ı of ari	thmetic & logic u	init and	understa	nding of	f the fixe	ed poi	nt an	d		
<u>CO 2</u>	float	ingpoi	nt ar	ithmet	ic oper	rations.	d the ee	naamt of	Dinalini	20					
$\frac{003}{004}$	O 4 Understanding the hierarchical memory system, cache memories and virtual memory														
CO 5	Und	erstand	ding t	the dif	ferent	ways of commun	icating v	with I/O	devices	and star	ndard	I/O in	nterfa	ces	
0		1	e			, 		(DO)						DCO	DCO
Course			Programme Outcome (PO) PSO 1 2 2 4 5 6 7 9 0 10 11 12 1									<u>PS0</u>			
		1	2	3 2	4	3	-	-	0	-	- 10	-	12	1	2
CO-1		2	2	2	2	2							2		
CO-2		3	2	2	2	2	-	-	-	-	-	-	2		
CO-3		2	2	3	3	2	-	1	-	-	-	-	2	2	
CO-4		3	2	3	2	2	-	-	-	-	2	-	2		
CO-5		2	2	3	2	2	-	-	-	-	-	-	2		
РО		2.6	2	2.6	2.4	2	-	1	-	-	2	-	2	2	2
Tai	rget														210
						DETAILED	DILLA	505							5-1-0
Jnit		Торіс												Propose Lecture	
Ι	Introduction: Functional units of digital system and their interconnections, buses, bus architecture, types of buses and bus arbitration. Register, bus and memory transfer. Processor organization, general registers organization, stock organization and addressing medoa													08	
II	Arithmetic and logic unit: Look ahead carries adders. Multiplication: Signed operand multiplication, Booths algorithm and array multiplier. Division and logic operations. Floating point arithmetic operation, Arithmetic & logic unit design. IEEE Standard for Floating Point Numbers													08	
III	Control Unit: Instruction types, formats, instruction cycles and sub cycles (fetch and execute etc), micro operations, execution of a complete instruction. Program Control, Reduced Instruction Set Computer, Pipelining. Hardwire and micro programmed control: micro programme sequencing, concept of horizontal and vertical microprogramming.												08		
IV Memory: Basic concept and hierarchy, semiconductor RAM memories, 2D & 2 1/2D memory organization. ROM memories. Cache memories: concept and design issues & performance, address mapping and replacement Auxiliary memories: magnetic disk, magnetic tape and optical disks Virtual memory: concept implementation.													08		
V	 Input / Output: Peripheral devices, I/O interface, I/O ports, Interrupts: interrupt hardware, types of interrupts and exceptions. Modes of Data Transfer: Programmed I/O, interrupt initiated I/O and Direct Memory Access., I/O channels and processors. Serial Communication: Synchronous & asynchronous communication, standard communication interfaces 												08		

Text books:

1. Computer System Architecture - M. Mano

Carl Hamacher, Zvonko Vranesic, Safwat Zaky Computer Organization, McGraw-Hill, Fifth Edition, Reprint

3. John P. Hayes, Computer Architecture and Organization, Tata McGraw Hill, Third Edition, 1998. Reference

books 4. William Stallings, Computer Organization and Architecture-Designing for Performance, Pearson Education, Seventh edition, 2006.

5. Behrooz Parahami, "Computer Architecture", Oxford University Press, Eighth Impression, 2011.

6. David A. Patterson and John L. Hennessy, "Computer Architecture-A Quantitative Approach", Elsevier, a division of reed India Private Limited, Fifth edition, 2012

7. Structured Computer Organization, Tannenbaum(PHI)

	Discrete Structures & Theory of Logic									
Course Outcome (CO) Bloom's Knowledge I										
	At the end of course, the student will be able to understand									
CO 1	Write an argument using logical notation and determine if the argument is or is not valid.									
CO 2	Understand the basic principles of sets and operations in sets.									
CO 3	Demonstrate an understanding of relations and functions and be able to determine their properties.									
CO 4	Demonstrate different traversal methods for trees and graphs.									
CO 5	Model problems in Computer Science using graphs and trees.									
	DETAILED SYLLABUS	3-0-0								
Unit	Topic									
Ι	Set Theory: Introduction, Combination of sets, Multisets, Ordered pairs. Proofs of some general identities on sets. Relations: Definition, Operations on relations, Properties of relations, Composite Relations, Equality of relations, Recursive definition of relation, Order of relations. Functions: Definition, Classification of functions, Operations on functions, Recursively defined functions. Growth of Functions. Natural Numbers: Introduction, Mathematical Induction, Variants of Induction, Induction with Nonzero Base cases. Proof Methods, Proof by counter – example, Proof by contradiction.									
Π	Algebraic Structures: Definition, Groups, Subgroups and order, Cyclic Groups, Cosets, Lagrange's theorem, Normal Subgroups, Permutation and Symmetric groups, Group Homomorphisms, Definition and elementary properties of Rings and Fields.									
III	Lattices: Definition, Properties of lattices – Bounded, Complemented, Modular and Complete lattice. Boolean Algebra: Introduction, Axioms and Theorems of Boolean algebra, Algebraic manipulation of Boolean expressions. Simplification of Boolean Functions, Karnaugh maps, Logic gates, Digital circuits and Boolean algebra.									
IV	Propositional Logic: Proposition, well formed formula, Truth tables, Tautology, Satisfiability, Contradiction, Algebra of proposition, Theory of Inference. (8) Predicate Logic: First order predicate, well formed formula of predicate, quantifiers, Inference theory of predicate logic.									
V	Trees: Definition, Binary tree, Binary tree traversal, Binary search tree. Graphs: Definition and terminology, Representation of graphs, Multigraphs, Bipartite graphs, Planar graphs, Isomorphism and Homeomorphism of graphs, Euler and Hamiltonian paths, Graph coloring, Recurrence Relation & Generating function: Recursive definition of functions, Recursive algorithms, Method of solving recurrences. Combinatorics: Introduction, Counting Techniques, Pigeonhole Principle									

Text books:

1.Koshy, Discrete Structures, Elsevier Pub. 2008 Kenneth H. Rosen, Discrete Mathematics and Its Applications, 6/e, McGraw-Hill, 2006.

2. B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, 5/e, Prentice Hall, 2004.

3.E.R. Scheinerman, Mathematics: A Discrete Introduction, Brooks/Cole, 2000.

4.R.P. Grimaldi, Discrete and Combinatorial Mathematics, 5/e, Addison Wesley, 2004

5. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill.

6. Trembley, J.P & R. Manohar, "Discrete Mathematical Structure with Application to Computer Science", McGraw Hill.

4. Deo, 7.Narsingh, "Graph Theory With application to Engineering and Computer.Science.", PHI.

8. Krishnamurthy, V., "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi

Course Code:			PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	3	1	-	-	2	-	-	-	-	-	I	-	1	-
CO-2	2	-	-	-	-	-	-	-	-	-	I	-	1	-
CO-3	3	2	2	1	2	-	-	1	-	-	-	1	2	-
CO-4	3	-	-	3	2	2	-	1	-	-	-	1	1	1
CO-5	2	3	3	-	2	-	-	-	-	-	-	2	2	2
PO Target	2.4	2.2	2.5	2	2	2	-	1	-	-	-	1.33	1.4	1.5
Data Structure using C Lab

Write C Programs to illustrate the concept of the following:

- 1. Sorting Algorithms-Non-Recursive.
- 2. Sorting Algorithms-Recursive.
- 3. Searching Algorithm.
- 4. Implementation of Stack using Array.
- 5. Implementation of Queue using Array.
- 6. Implementation of Circular Queue using Array.
- 7. Implementation of Stack using Linked List.
- 8. Implementation of Queue using Linked List.
- 9. Implementation of Circular Queue using Linked List.
- 10. Implementation of Tree Structures, Binary Tree, Tree Traversal, Binary Search Tree, Insertion and Deletion in BST.
- 11. Graph Implementation, BFS, DFS, Minimum cost spanning tree, shortest path algorithm. <u>Computer</u>

<u>Course Outcome (Data Structure using C Lab)</u>

CO No.	Statement of Course Outcome	Bloom's Cognitive	Knowledge
After completo	etion of the course, the student will be able	Process Level (BL)	Category (KC)
C01	Implement various operations on Array and Linked List.	Evaluate	Conceptual, Procedural
C02	Implement the concept of Stack and Queue using Array and LinkedList.	Analyze	Conceptual, Procedural
CO3	Implement the concept of Tree Data Structure using Array and LinkedList.	Analyze	Conceptual, Procedural
CO4	Implement various application of Graph data Structure.	Analyze	Conceptual, Procedural
C05	Implement various searching and Sorting Techniques.	Apply	Conceptual, Procedural

Course					Prog	rammo	e Outo	come ((PO)				PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	2	3	2	3	2	-	-	-	-	3	2	3	3	3
CO-2	3	2	1	2	2	-	-	-	-	3	3	2	3	2
CO-3	3	1	3	3	2	-	-	-	-	3	2	3	2	3
CO-4	1	2	3	2	3	-	-	-	-	3	3	2	3	2
CO-5	3	3	3	2	3	-	-	-	-	2	2	3	2	3
PO Target	2.4	2.2	2.4	2.4	2.4	-	-	-	-	2.8	2.4	2.6	2.6	2.6

<u>CO-PO Mapping (Data Structure using C Lab)</u>

Computer Organization Lab

- 1. Implementing HALF ADDER, FULL ADDER using basic logic gates
- 2. Implementing Binary -to -Gray, Gray -to -Binary code conversions.
- 3. Implementing 3-8 line DECODER.
- 4. Implementing 4x1 and 8x1 MULTIPLEXERS.
- 5. Verify the excitation tables of various FLIP-FLOPS.
- 6. Design of an 8-bit Input/ Output system with four 8-bit Internal Registers.
- 7. Design of an 8-bit ARITHMETIC LOGIC UNIT.
- 8. Design the data path of a computer from its register transfer language description.
- 9. Design the control unit of a computer using either hardwiring or microprogramming based on its register transfer language description.
- 10. Implement a simple instruction set computer with a control unit and a data path.

CO No. **Statement of Course Outcome** Bloom's **Cognitive Process** Knowledge Category (KC) Level (BL) After completion of the course, the student will be able to Factual. **CO1** Understand Design basic digital circuits Procedural Factual. Evaluate Conceptual, **CO2** Design 8 bits I/O, ALU and Adder & Subtractor. Procedural Conceptual, Analyze the concept of control unit and **CO3** Analyze Procedural Multiplexer/Decoder Conceptual, Analyze the concept of binary to gray code **CO4** Apply Procedural converter & gray to binary code converter. Conceptual, **CO5** Apply Apply algorithm using simulators Procedural

Course Outcome (COA Lab)

<u>CO-PO Mapping (COA Lab)</u>

Course		Programme Outcome (PO)													
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO-1	1	2	-	-	-	-	-	-	-	-	-	1	-	-	
CO-2	2	2	1	-	-	2	-	-	-	-	-	2	-	-	
CO-3	1	2	2	-	-	-	-	-	-	-	-	1	-	-	
CO-4	1	2	1	2	-	-	-	-	-	-	-	1	-	-	
CO-5	-	-	-	-	-	-	-	-	-	-					
PO Target	1.25	2.00	1.33	2.00		2.00						1.25			

Discrete Structure & Logic Lab

Programming Language/Tool Used: C and Mapple

- 1. Write a program in C to create two sets and perform the Union operation on sets.
- 2. Write a program in C to create two sets and perform the Intersectison operation on sets.
- 3. Write a program in C to create two sets and perform the Difference operation on sets.
- 4. Write a program in C to create two sets and perform the Symmetric Difference operation.
- 5. Write a program in C to perform the Power Set operation on a set.
- 6. Write a program in C to Display the Boolean Truth Table for AND, OR, NOT.
- 7. Write a C Program to find Cartesian Product of two sets
- 8. Write a program in C for minimum cost spanning tree.
- 9. Write a program in C for finding shortest path in a Graph

Note: Understanding of mathematical computation software Mapple to experiment the followings (exp. 10 to 25):

- 10. Working of Computation software
- 11. Discover a closed formula for a given recursive sequence vice-versa
- 12. Recursion and Induction
- 13. Practice of various set operations
- 14. Counting
- 15. Combinatorial equivalence
- 16. Permutations and combinations
- 17. Difference between structures, permutations and sets
- 18. Implementation of a recursive counting technique
- 19. The Birthday problem
- 20. Poker Hands problem
- 21. Baseball best-of-5 series: Experimental probabilities
- 22. Baseball: Binomial Probability
- 23. Expected Value Problems
- 24. Basketball: One and One
- 25. Binary Relations: Influence

<u>Course Outcome - Discrete Structures & Theory of Logic Lab</u>

CO No.	Statement of Course Outcome	Bloom's	
		Cognitive	Knowledge
After complet	ion of the course, the student will be able to	Process Level (BL)	Category (KC)
	Application of various operations of set and		Conceptual
C01	Boolean algebra.	Apply	& Procedural
	Apply the concept of minimum cost		Conceptual &
CO2	spanning tree and shortest path in graphs.	Apply	Procedural
	Illustrate recursion and mathematical		Conceptual
CO3	induction for natural numbers.	Analyze	& Procedural
	Compute premutation and combination for		Conceptual
CO4	various counting problems.	Analyze	& Procedural
			Conceptual
C05	Compute probability for various problems.	Analyze	& Procedural

<u>CO-PO Mapping - Discrete Structures & Theory of Logic Lab</u>

Course		Programme Outcome (PO)													
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO-1	2	2	-	-	3	-	-	-	2	-	-	-	3	-	
CO-2	3	3	2	-	-	-	-	-	-	-	-	-	1	3	
CO-3	3	3	-	3	-	-	-	-	-	-	-	-	-	3	
CO-4	3	3	-	3	-	-	-	-	-	-	-	-	-	3	
CO-5	2	-	-	3	-	-	-	_	-	-	-	-	-	2	
PO Target	2	-	-	3	-	-	-	-	-	-	-	-	-	2	

<u>Course Outcome (Mini Project)</u>

CO No	Statement of Course Outcome	Bloom's	
CO NO.	Statement of Course Outcome	Cognitive	Knowledge
		Process Level	Category (KC)
After comple	tion of the course, the student will be able to	(BL)	
	Discover potential research areas in the field of		
C01	IT	Understand	Factual
	Compare and contrast the several existing		
CO2	solutions for research challenge	Evaluate	Conceptual
	Demonstrate an ability to work in teams and		
CO3	manage the conduct of the research study	Analyze	Procedural
	Formulate and propose a plan for creating		
CO4	a solution for the research plan identified	Evaluate	Procedural
	To report and present the findings of the		
CO5	study conducted in the preferred domain	Evaluate	Procedural

<u>CO-PO Mapping (Mini Project)</u>

Course	Se Programme Outcome (PO)												PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	3	3	3	3	3	2	-	-	2	2	2	3	2	2
CO-2	3	3	3	3	3	-	-	-	2	-	2	3	2	3
CO-3	3	3	3	3	3	1	-	-	3	-	2	2	3	2
CO-4	3	3	3	3	3	2	-	-	3	-	2	3	2	2
CO-5	2	-	-	-	-	-	-	-	2	-	2	-	-	-
РО														
Target	2.80	3	3	3	3	1.67	0	0	2.4	2	2	2.75	2.25	2.25

B.TECH. (COMPUTER SCIENCE AND ENGINEERING) FOURTH SEMESTER (DETAILED SYLLABUS)

	Operating systems		
	Course Outcome (CO)	Bloom's Knowledge Le	evel (KL)
	At the end of course, the student will be able to u	inderstand	
CO 1	Understand the structure and functions of OS		
CO 2	Learn about Processes, Thre		
	ads and Scheduling a		
CO 3	Understand the principles of concurrency and Deadlocks		
CO 4	Learn various memory management scheme		
CO 5	Study I/O management and File systems.		
	DETAILED SYLLABUS		3-0-0
Unit	Торіс		Proposed
			Lecture
I	Introduction : Operating system and functions, Classification of Interactive, Time sharing, Real Time System, Multiprocessor Sy Multiprocess Systems, Multithreaded Systems, Operating System St System Components, Operating System services, Reentrant Kernels, N Systems.	Operating systems- Batch, stems, Multiuser Systems, tructure- Layered structure, Monolithic and Microkernel	08
II	Concurrent Processes: Process Concept, Principle of Concurrency, Pro Mutual Exclusion, Critical Section Problem, Dekker's solution, Peters Test and Set operation; Classical Problem in Concurrency- Dining Philo Barber Problem; Inter Process Communication models and Schemes, Pr	ducer / Consumer Problem, son's solution, Semaphores, sopher Problem, Sleeping ocess generation.	08
III	CPU Scheduling: Scheduling Concepts, Performance Criteria, Process Diagram, Schedulers, Process Control Block (PCB), Process address s information, Threads and their management, Scheduling Algorithms, Deadlock: System model, Deadlock characterization, Prevention, Recovery from deadlock.	s States, Process Transition space, Process identification Multiprocessor Scheduling. Avoidance and detection,	08
IV	Memory Management: Basic bare machine, Resident monitor, Mu partitions, Multiprogramming with variable partitions, Protection sche Paged segmentation, Virtual memory concepts, Demand paging, Perfo Page replacement algorithms, Thrashing, Cache memory organization, I	ltiprogramming with fixed mes, Paging, Segmentation, ormance of demand paging, Locality of reference.	08
V	I/O Management and Disk Scheduling: I/O devices, and I/O subsystems and disk scheduling, RAID. File System: File concept, File organizat File directories, and File sharing, File system implementation issues, security.	, I/O buffering, Disk storage tion and access mechanism, File system protection and	08
Text bo	oks:		
1.	Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley		
2.	Sibsankar Halder and Alex A Aravind, "Operating Systems", Pearson Ed	ducation	
3.	Harvey M Dietel, " An Introduction to Operating System", Pearson Educ	cation	
4.	D M Dhamdhere, "Operating Systems : A Concept based Approach", 2n	d Edition,	
5.	TMH 5. William Stallings, "Operating Systems: Internals and Design Pr	inciples ", 6th Edition, Pearso	n Education

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO 1	PSO2
CO1	3	3	3	3	3	2	1	1	1	1	1	3	3	3
CO2	3	3	2	3	2	2	2	1	1	1	1	3	3	3
CO3	3	3	3	3	3	3	1	1	1	1	1	3	3	3
CO4	3	3	2	3	2	3	3	2	1	1	2	3	3	3
CO5	3	2	2	2	2	3	3	2	1	1	2	3	3	3

Theory of Automata and Formal Languages										
	Course Outcome (CO) Bloom's Knowledge Level (
At the end of course, the student will be able to understand										
CO 1	Analyse and design finite automata, pushdown automata, Turing ma grammars	chines, formal languages, and								
CO 2	Analyse and design, Turing machines, formal languages, and gramma	rs								
CO 3	Demonstrate the understanding of key notions, such as algorithm, co complexity through problem solving	omputability, decidability, and								
CO 4	Prove the basic results of the Theory of Computation.									
CO 5	State and explain the relevance of the Church-Turing thesis.									

												PO	PO		
CO \ PO	O Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	11	12	PSO1	PSO2
	CO1	3	2	2	2	1					1	1	1	2	2
(CO2 2 3 3 2 1 1 1 1												2	2	
(CO3	203 2 2 3 3 1 1 1 1												2	2
(CO4	2	3	3	2	1					1	1	1	1	1
(CO5	1	3	2	3	1					1	1	1	1	1
				D	ETAIL	ED SY	LLAB	US							3-1-0
Unit						Т	opic							Pro Leo	posed cture
I Basic Concepts and Automata Theory: Introduction to Theory of Computation- Automata, Computability and Complexity, Alphabet, Symbol, String, Formal Languages, Deterministic Finite Automaton (DFA)- Definition, Representation, Acceptability of a String and Language, Non Deterministic Finite Automaton (NFA), Equivalence of DFA and NFA, NFA with ε-Transition, Equivalence of NFA's with and without ε-Transition, Finite Automata with output- Moore Machine, Mealy Machine, Equivalence of Moore and Mealy Machine, Minimization of Finite Automata Mybill Nerode Theorem Simulation of DEA and NEA												a, te on n, ite	08		
Ш	I Regular Expressions and Languages: Regular Expressions, Transition Graph, Kleen's Theorem, Finite Automata and Regular Expression- Arden's theorem, Algebraic Method Using Arden's Theorem, Regular and Non-Regular Languages- Closure properties of Regular Languages, Pigeonhole Principle, Pumping Lemma, Application of Pumping Lemma, Decidability- Decision properties, Finite Automata and Regular Languages, Regular Languages and Computers, Simulation of Transition Graph and Regular language.										n, 's s, on on	08			

III	Regular and Non-Regular Grammars: Context Free Grammar(CFG)-Definition, Derivations, Languages, Derivation Trees and Ambiguity, Regular Grammars-Right Linear and Left Linear grammars, Conversion of FA into CFG and Regular grammar into FA, Simplification of CFG, Normal Forms- Chomsky Normal Form(CNF), Greibach Normal Form (GNF), Chomsky Hierarchy, Programming problems based on the properties of CFGs.	08
IV	Push Down Automata and Properties of Context Free Languages: Nondeterministic Pushdown Automata (NPDA)- Definition, Moves, A Language Accepted by NPDA, Deterministic Pushdown Automata(DPDA) and Deterministic Context free Languages(DCFL), Pushdown Automata for Context Free Languages, Context Free grammars for Pushdown Automata, Two stack Pushdown Automata, Pumping Lemma for CFL, Closure properties of CFL, Decision Problems of CFL, Programming problems based on the properties of CFLs.	08
V	Turing Machines and Recursive Function Theory : Basic Turing Machine Model, Representation of Turing Machines, Language Acceptability of Turing Machines, Techniques for Turing Machine Construction, Modifications of Turing Machine, Turing Machine as Computer of Integer Functions, Universal Turing machine, Linear Bounded Automata, Church's Thesis, Recursive and Recursively Enumerable language, Halting Problem, Post's Correspondance Problem, Introduction to Recursive Function Theory.	08
Text bo	poks:	
1.	Introduction to Automata theory, Languages and Computation, J.E.Hopcraft, R.Motwani, and Ullman. Pearson Education Asia	2nd edition,
2.	introduction to languages and the theory of computation, J Martin, 3rd Edition, Tata McGraw Hill	

3. Elements and Theory of Computation, C Papadimitrou and C. L. Lewis, PHI

4. Mathematical Foundation of Computer Science, Y.N.Singh, New Age Internationa

	Microprocessor		
	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)
	At the end of course, the student will be able to un	nderstand	
CO 1	Apply a basic concept of digital fundamentals to Microprocesso system.	or based personal computer	
CO 2	Analyze a detailed s/w & h/w structure of the Microprocessor.		
CO 3	Illustrate how the different peripherals (8085/8086) are interfaced with	th Microprocessor.	
CO 4	Analyze the properties of Microprocessors(8085/8086)		
CO 5	Evaluate the data transfer information through serial & parallel ports.		
	DETAILED SYLLABUS		3-1-0
Unit	Topic		Proposed Lecture
Ι	Microprocessor evolution and types, microprocessor architecture and o addressing modes, interrupts, data transfer schemes, instruction and d diagram, Interfacing devices.	peration of its components, lata flow, timer and timing	08
II	Pin diagram and internal architecture of 8085 microprocessor, register interrupt and machine cycle. Instruction sets. Addressing modes. Inst Classification: data transfer, arithmetic operations, logical operation machine control and assembler directives.	rs, ALU, Control & status, rruction formats Instruction ons, branching operations,	08
III	Architecture of 8086 microprocessor: register organization, bus intermemory addressing, and memory segmentation. Operating modes. I format, Types of instructions. Interrupts: hardware and software interrupts	rface unit, execution unit, instruction sets, instruction ts.	08
IV	Assembly language programming based on intel 8085/8086. Instruction logic, branch operations, looping, counting, indexing, programming tec delays, stacks and subroutines, conditional call and return instructions	ns, data transfer, arithmetic, chniques, counters and time	08
V	Peripheral Devices: 8237 DMA Controller, 8255 programmable peripher 8253/8254programmable timer/counter, 8259 programmable interrupt c RS232C.	al interface, ontroller, 8251 USART and	08
Cext boo 1. 2. 3. 4. 5. 6. 7. 8.	 bks: Gaonkar, Ramesh S , "Microprocessor Architecture, Programming and Ap 8085", Penram International Publishing. Ray A K , Bhurchandi K M , "Advanced Microprocessors and Peripherals Hall D V ,"Microprocessor Interfacing', TMH Liu and, "Introduction to Microprocessors", TMH Brey, Barry B, "INTEL Microprocessors", PHI Renu Sigh & B.P. Gibson G A , "Microcomputer System: The 8086/8088 Aditya P Mathur Sigh, "Microprocessor, Interfacing and Applications M F and Applications 	oplications with 3°, TMH 8 family'' ,PHI Rafiqzzaman, "Microprocesso	ors, Theor

Operating Systems Lab

- 1. Study of hardware and software requirements of different operating systems (UNIX,LINUX,WINDOWS XP, WINDOWS7/8
- 2. Execute various UNIX system calls for
 - i. Process management
 - ii. File management iii. Input/output Systems calls 3.
 - Implement CPU Scheduling Policies:
 - i. SJF
 - ii. Priority
 - iii. FCFS iv. Multi-level Queue
- 4. Implement file storage allocation technique:
 - i. Contiguous(using array)
 - ii. Linked-list(using linked-list) iii.
 - Indirect allocation (indexing)
- 5. Implementation of contiguous allocation techniques:
 - i. Worst-Fit
 - ii. Best- Fit iii. First- Fit
- 6. Calculation of external and internal fragmentation
 - i. Free space list of blocks from system ii.
 - List process file from the system
- 7. Implementation of compaction for the continually changing memory layout and calculate total movement of data
- 8. Implementation of resource allocation graph RAG)
- 9. Implementation of Banker"s algorithm
- 10. Conversion of resource allocation graph (RAG) to wait for graph (WFG) for each type of method used for storing graph.
- 11. Implement the solution for Bounded Buffer (producer-consumer)problem using inter process communication techniques-Semaphores
- 12. Implement the solutions for Readers-Writers problem using inter process communication technique -Semaphore

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	1	1	1	1	1	3	3	3
CO2	3	3	2	3	2	2	2	1	1	1	1	3	3	3
CO3	3	3	3	3	3	1	1	1	1	1	1	3	3	3
CO4	3	3	2	3	2	3	3	2	1	1	2	3	3	3
CO5	3	2	2	2	2	3	3	2	1	1	2	3	3	3

Microprocessor Lab

1. Write a program using 8085 Microprocessor for Decimal, Hexadecimal addition and subtraction of two Numbers.

2. Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.

3. To perform multiplication and division of two 8 bit numbers using 8085.

4. To find the largest and smallest number in an array of data using 8085 instruction set.

5. To write a program to arrange an array of data in ascending and descending order.

6. To convert given Hexadecimal number into its equivalent ASCII number and vice versa using 8085 instruction set.

7. To write a program to initiate 8251 and to check the transmission and reception of character.

8. To interface 8253 programmable interval timer to 8085 and verify the operation of 8253 in six different modes.

9. To interface DAC with 8085 to demonstrate the generation of square, saw tooth and triangular wave.

10. Serial communication between two 8085 through RS-232 C port.

Python Language Programming Lab

- 1. To write a python program that takes in command line arguments as input and print the number of arguments.
- 2. To write a python program to perform Matrix Multiplication.
- 3. To write a python program to compute the GCD of two numbers.
- 4. To write a python program to find the most frequent words in a text file.
- 5. To write a python program find the square root of a number (Newton's method).
- 6. To write a python program exponentiation (power of a number).
- 7. To write a python program find the maximum of a list of numbers.
- 8. To write a python program linear search.
- 9. To write a python program Binary search.
- 10. To write a python program selection sort. 11. To write a python program Insertion sort.
- 12. To write a python program merge sort.
- 13. To write a python program first n prime numbers.
- 14. To write a python program simulate bouncing ball in Pygame.

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1	3	-	-	-	-	-	-	1	1	1
CO2	3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO3	3	3	2	2	3	-	-	-	-	-	-	2	2	2
CO4	3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO5	3	2	2	3	3	-	-	-	-	-	-	2	2	2

Mathematics-IV (PDE, Probability and Statistics) Computer/Electronics/Electrical & Allied Branches, CS/IT, EC/IC, EE/EN, Mechanical& Allied Branches, (ME/AE/AU/MT/PE/MI/PL) Textile/Chemical & Allied Branches, TT/TC/CT, CHE/FT

Subject Code						
Category	Basic Science	Course				
Subject Name	MATHEMAT	ICS-IV				
Scheme and Credits	ТТР	Theory Marks	Se	essional	Tatal	Credit
	L-1-r		Test	Assig/Att.	Totai	Creun
	3—1—0	100	30	20	150	4
Dra requisites (if any)	Knowledge of	Mathematics Land II	of B. Tech o	r equivalent		

Course Outcomes

The objective of this course is to familiarize the students with partial differential equation, their application and statistical techniques. It aims to present the students with standard concepts and tools at an intermediate to superior level that will provide them well towards undertaking a variety of problems in the discipline.

The students will learn:

- The idea of partial differentiation and types of partial differential equations
- The idea of classification of second partial differential equations, wave , heat equation and transmission lines
- The basic ideas of statistics including measures of central tendency, correlation, regression and their properties.
- The idea s of probability and random variables and various discrete and continuous probability distributions and their properties.
- The statistical methods of studying data samples, hypothesis testing and statistical quality control, control charts and their properties.

Module I: Partial Differential Equations

Origin of Partial Differential Equations, Linear and Non Linear Partial Equations of first order,

Lagrange's Equations, Charpit's method, Cauchy's method of Characteristics, Solution of Linear Partial Differential Equation of Higher order with constant coefficients, Equations reducible to linear partial differential equations with constant coefficients.

Module II: Applications of Partial Differential Equations:

Classification of linear partial differential equation of second order, Method of separation of variables, Solution of wave and heat conduction equation up to two dimension, Laplace equation in two dimensions, Equations of Transmission lines.

Module III: Statistical Techniques I:

Introduction: Measures of central tendency, Moments, Moment generating function (MGF), Skewness, Kurtosis, Curve Fitting, Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves

,Correlation and Rank correlation, Regression Analysis: Regression lines of y on x and x on y, regression coefficients, properties of regressions coefficients and non linear regression.

Module IV: Statistical Techniques II:

Probability and Distribution: Introduction, Addition and multiplication law of probability, Conditional probability, Baye's theorem, Random variables (Discrete and Continuous Random variable) Probability mass function and Probability density function, Expectation and variance, Discrete and Continuous Probability distribution: Binomial, Poission and Normal distributions.

Module V: Statistical Techniques III:

Sampling, Testing of Hypothesis and Statistical Quality Control: Introduction, Sampling Theory (Small and Large), Hypothesis, Null hypothesis, Alternative hypothesis, Testing a

Hypothesis, Level of significance, Confidence limits, Test of significance of difference of means,

T-test, F-test and Chi-square test, One way Analysis of Variance (ANOVA).Statistical Quality Control (SQC), Control Charts, Control Charts for variables (-*X* and R Charts), Control Charts for Variables (p, np and C charts).

Text Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley & Sons, 2006.
- 2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003(Reprint).
- 3. S. Ross: A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968. **Reference Books**
- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2000.
- 2. T.Veerarajan : Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi.
- 3. R.K. Jain and S.R.K. Iyenger: Advance Engineering Mathematics; Narosa Publishing House, New Delhi.
- 4. J.N. Kapur: Mathematical Statistics; S. Chand & Sons Company Limited, New Delhi. 5. D.N.Elhance,V. Elhance & B.M. Aggarwal: Fundamentals of Statistics; Kitab Mahal Distributers, New Delhi.

	Course Outcome (CO)	Bloom's Knowledge Level (KL)
	At the end of this course, the students will be able to:	
CO 1	Remember the concept of partial differential equation and to solve partial differential equations	K ₁ & K ₃
CO 2	Analyze the concept of partial differential equations to evaluate the problems concerned with partial differential equations	K4 & K5
CO 3	Understand the concept of correlation, moments, skewness and kurtosis and curve fitting	K ₂
CO 4	Remember the concept of probability to evaluate probability distributions	K1 & K5
CO 5	Apply the concept of hypothesis testing and statistical quality control to create control charts	K3 & K6

Course					Progr (PO)	amme	Outco	ome					PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	3	2	-	-	-	-	-	-	-	-	-	2	1	2
CO-2	3	3	2	-	-	-	-	-	-	-	-	2	1	2
CO-3	3	3	2	3	2	-	-	-	-	-	-	2	2	2
CO-4	3	3	1	1	1	-	-	-	-	-	-	1	1	1
CO-5	3	3	2	3	3	2	2	-	-	-	-	2	2	3
PO Target	3	3	1.75	2.3	2.3	2	2					1.8	1.6	3.3

Evaluation methodology to be followed:

The evaluation and assessment plan consists of the following components:

- a. Class attendance and participation in class discussions etc.
- b. Quiz.
- c. Tutorials and assignments.
- d. Sessional examination.
- e. Final examination.

Award of Internal/External Marks:

Assessment procedure will be as follows:

- 1. These will be comprehensive examinations held on-campus (Sessionals).
- 2. Quiz.
 - a. Quiz will be of type multiple choice, fill-in-the-blanks or match the columns.
 - b. Quiz will be held periodically.
- 3. Tutorials and assignments
 - a. The assignments/home-work may be of multiple choice type or comprehensive type at least one assignment from each Module/Unit.
 - b. The grades and detailed solutions of assignments (of both types) will be accessible online after the. submission deadline.
 - c. Final examinations. These will be comprehensive external examinations held on-campus or off campus (External examination) on dates fixed by the university.

			SEM	1ES	TE	R- III	/IV						
SI No	Subject Codes	Subject	Periods	Periods Evaluation Scheme								Total	Credit
51.1 (0.		Bubjeet	L	Т	Р	CT	TA	Total	PS	TE	PE		
1		Engineering Mechanics	3	1	0	30	20	50		100		150	4
2		Material Science	3	1	0	30	20	50		100		150	4
3		Energy Science & Engineering	3	1	0	30	20	50		100		150	4
4		Sensor & Instrumentation	3	1	0	30	20	50		100		150	4
5		Basics Data Structure & Algorithms	3	1	0	30	20	50		100		150	4
6		Introduction to Soft Computing	3	1	0	30	20	50		100		150	4
7		Analog Electronics Circuits	3	1	0	30	20	50		100		150	4
8		Electronics Engineering	3	1	0	30	20	50		100		150	4

Engineering Science Courses for B.Tech.(AICTE Model Curriculum) 2nd Year

Sl.No.	Subject	
1	Engineering Mechanics	To be offered to any Engg. Branch except ME/CE/AG and allied branches
2	Material Science	
3	Energy Science & Engineering	To be offered to any Engg. Branch except EE and allied branches
4	Sensor & Instrumentation	
5	Basics Data Structure & Algorithms	To be offered to any Engg. Branch except CSE and allied branches
6	Introduction to Soft Computing	
7	Analog Electronics Circuits	To be offered to any Engg. Branch except EC and allied branches
8	Electronics Engineering	

Important Note: CH/BT/TX Engg. and allied branches can be offered any of the above listed ES.

ENGINEERING MECHANICS

UNIT-I:

Two-dimensional force systems: Basic concepts, Laws of motion, Principle of transmissibility of forces, transfer of a force to parallel position, resultant of a force system, simplest resultant of two dimensional concurrent and non-concurrent force systems, distribution of force systems, free body diagrams, equilibrium and equations of equilibrium.

Friction: Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction.

UNIT-II:

Beam: Introduction, shear force and bending moment, different equations of equilibrium, shear force and bending moment diagram for statically determined beams.

Trusses: Introduction, simple truss and solution of simple truss, methods of F-joint and methods of sections.

UNIT-III:

Centroid and moment of inertia: Centroid of plane, curve, area, volume and composite bodies, moment of inertia of plane area, parallel axis theorem, perpendicular axis theorem, principle moment of inertia, mass moment of inertia of circular ring, disc, cylinder, sphere, and cone about their axis of symmetry.

UNIT-IV:

Kinematics of rigid body: Introduction, plane motion of rigid body, velocity and acceleration under translational and rotational motion, relative velocity.

Kinetics of rigid body: Introduction, force, mass and acceleration, work and energy, impulse and momentum, D'Alembert's principle and dynamic equilibrium.

UNIT-V:

Simple stress and strain: Introduction, normal and shear stresses, stress-strain diagrams for ductile and brittle material, elastic constants, one-dimensional loading of members of varying cross sections, strain energy. Pure bending of beams: Introduction, simple bending theory, stress in beams of different cross sections. Torsion: Introduction, torsion of shafts of circular cross sections, torque and twist, shear stress due to torque.

Books and References:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010).
- 3. A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications.
- 4. Engineering Mechanics, R.S. Khurmi, S.Chand Publishing.
- 5. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons (1993).
- 6. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3 rd Edition, Vikas Publishing House Pvt. Ltd., (2005).
- 7. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, (1998).
- 8. Engineering mechanics by Irving H. Shames, Prentice-Hall.

MATERIAL SCIENCE

UNIT-I:

Phase Diagrams:

Solid solutions – Hume Rothery's rules – the phase rule – single component system – one-component system of iron – binary phase diagrams – isomorphous systems – the tie-line rule – the lever rule – application to isomorphous system – eutectic phase diagram – peritectic phase diagram – other invariant reactions – free energy composition curves for binary systems – microstructural change during cooling.

UNIT-II:

Ferrous Alloys:

The iron-carbon equilibrium diagram – phases, invariant reactions – microstructure of slowly cooled steels – eutectoid steel, hypo and hypereutectoid steels – effect of alloying elements on the Fe-C system – diffusion in solids – Fick's laws – phase transformations – T-T-diagram for eutectoid steel – pearlitic, baintic and martensitic transformations – tempering of martensite – steels – stainless steels – cast irons.

UNIT-III:

Mechanical Properties:

Tensile test – plastic deformation mechanisms – slip and twinning – role of dislocations in slip – strengthening methods – strain hardening – refinement of the grain size – solid solution strengthening – precipitation hardening – creep resistance – creep curves – mechanisms of creep – creep-resistant materials – fracture – the Griffith criterion – critical stress intensity factor and its determination – fatigue failure – fatigue tests – methods of increasing fatigue life – hardness – Rockwell and Brinell hardness – Knoop and Vickers microhardness.

UNIT-IV:

Magnetic, Dielectric & Superconducting Materials:

Ferromagnetism – domain theory – types of energy – hysteresis – hard and soft magnetic materials – ferrites – dielectric materials – types of polarization – Langevin-Debye equation – frequency effects on polarization – dielectric breakdown – insulating materials – Ferroelectric materials – superconducting materials and their properties.

UNIT-V:

New Materials:

Ceramics – types and applications – composites: classification, role of matrix and reinforcement, processing of fiber reinforced plastics – metallic glasses: types , glass forming ability of alloys, melt spinning process, applications – shape memory alloys: phases, shape memory effect, pseudoelastic effect, NiTi alloy, applications – nanomaterials: preparation (bottom up and top down approaches), properties and applications – carbon nanotubes: types.

Text Books & References:

1. Balasubramanian, R. —Callister's Materials Science and Engineering. Wiley India Pvt. Ltd., 2014.

2. Raghavan, V. — Physical Metallurgy: Principles and Practicel. PHI Learning, 2015.

- 3. Raghavan, V. —Materials Science and Engineering: A First coursell. PHI Learning, 2015.
- 4. Askeland, D. —Materials Science and Engineering. Brooks/Cole, 2010.

5.Smith, W.F., Hashemi, J. & Prakash, R. —Materials Science and Engineering. Tata McGraw Hill Education Pvt. Ltd., 2014. 6. Wahab, M.A. —Solid State Physics: Structure and Properties of Materials. Narosa Publishing House, 2009.

Energy Science and Engineering

Unit-I Energy and its Usage: Units and scales of energy use, Mechanical energy and transport, Heat energy: Conversion between heat and mechanical energy, Electromagnetic energy: Storage, conversion, transmission and radiation, Introduction to the quantum, energy quantization, Energy in chemical systems and processes, flow of CO2, Entropy and temperature, carnot and Stirling heat engines, Phase change energy conversion, refrigeration and heat pumps, Internal combustion engines, Steam and gas power cycles, the physics of power plants. Solid-state phenomena including photo, thermal and electrical aspects

Unit-II Nuclear Energy: Fundamental forces in the universe, Quantum mechanics relevant for nuclear physics, Nuclear forces, energy scales and structure, Nuclear binding energy systematics, reactions and decays, Nuclear fusion, Nuclear fission and fission reactor physics, Nuclear fission reactor design, safety, operation and fuel cycles

Unit-III Solar Energy: Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, Basic physics of semiconductors, Carrier transport, generation and recombination in semiconductors, Semiconductor junctions: metal-semiconductor junction & p-n junction, Essential characteristics of solar photovoltaic devices, First Generation Solar Cells, Second Generation Solar Cells, Third Generation Solar Cells

Unit-IV Conventional & non-conventional energy source: Biological energy sources and fossil fuels, Fluid dynamics and power in the wind, available resources, fluids, viscosity, types of fluid flow, lift, Wind turbine dynamics and design, wind farms, Geothermal power and ocean thermal energy conversion, Tidal/wave/hydro power

Unit-V Systems and Synthesis: Overview of World Energy Scenario, Nuclear radiation, fuel cycles, waste and proliferation, Climate change, Energy storage, Energy conservation. Engineering for Energy conservation: Concept of Green Building and Green Architecture; Green building concepts, LEED ratings; Identification of energy related enterprises that represent the breath of the industry and prioritizing these as candidates; Embodied energy analysis and use as a tool for measuring sustainability. Energy Audit of Facilities and optimization of energy consumption

Reference/Text Books

- 1. Energy and the Challenge of Sustainability, World Energy Assessment, UNDP, New York, (2000).
- 2. Perspective of Modern Physics, A. Beiser, McGraw-Hill International Editions (1968).
- 3. Introduction to Modern Physics, H.S. Mani and G.K.Mehta, East-West Press (1988).
- 4. Introduction to Electrodynamics, D. J. Griffiths, Fourth Edition, Prentice Hall (2013).
- 5. Introductory Nuclear Physics, R. K. Puri and V.K. Babbar, Narosa Publishing House (1996).
- Physics of Solar Cells: From Basic Principles to Advanced Concepts by Peter Wurfel, John Wiley & Sons, 2016

7. Principles of Solar Engineering, D.Y. Goswami, F.Kreith and J.F. Kreider, Taylor and Francis, Philadelphia, 2000.

SENSOR AND INSTRUMENTATION

Pre-requisites of course: Basic Electrical Engineering

-		
Course	e Outcomes:	Knowledge Level, KL
Upon t	he completion of the course, the student will be able to:	
CO 1	Apply the use of sensors for measurement of displacement, force and pressure.	K ₃
CO2	Employ commonly used sensors in industry for measurement of temperature, position, accelerometer, vibration sensor, flow and level.	K ₃
CO3	Demonstrate the use of virtual instrumentation in automation industries.	K ₂
CO4	Identify and use data acquisition methods.	K ₃
CO5	Comprehend intelligent instrumentation in industrial automation.	K ₂

Detailed Syllabus:

Unit- I:

Sensors & Transducer: Definition, Classification & selection of sensors, Measurement of displacement using Potentiometer, LVDT & Optical Encoder, Measurement of force using strain gauge, Measurement of pressure using LVDT based diaphragm & piezoelectric sensor.

Unit-II:

Measurement of temperature using Thermistor, Thermocouple & RTD, Concept of thermal imaging, Measurement of position using Hall effect sensors, Proximity sensors: Inductive & Capacitive, Use of proximity sensor as accelerometer and vibration sensor, Flow Sensors: Ultrasonic & Laser, Level Sensors: Ultrasonic & Capacitive.

Unit -III:

Virtual Instrumentation: Graphical programming techniques, Data types, Advantage of Virtual Instrumentation techniques, Concept of WHILE & FOR loops, Arrays, Clusters & graphs,

Structures: Case, Sequence & Formula nodes, Need of software based instruments for industrial automation.

Unit-IV:

Data Acquisition Methods: Basic block diagram, Analog and Digital IO, Counters, Timers, Types of ADC: successive approximation and sigma-delta, Types of DAC: Weighted Resistor and R-2R Ladder type, Use of Data Sockets for Networked Communication.

Unit V:

Intelligent Sensors: General Structure of smart sensors & its components, Characteristic of smart sensors: Self calibration, Self-testing & self-communicating, Application of smart sensors: Automatic robot control & automobile engine control.

Text Books:

- 1. DVS Murthy, Transducers and Instrumentation, PHI 2nd Edition 2013
- 2. D Patranabis, Sensors and Transducers, PHI 2nd Edition 2013.
- 3. S. Gupta, J.P. Gupta / PC interfacing for Data Acquisition & Process Control, 2nd ED / Instrument Society of America, 1994.
- 4. Gary Johnson / Lab VIEW Graphical Programing II Edition / McGraw Hill 1997.

Reference Books:

- 1. Arun K. Ghosh, Introduction to measurements and Instrumentation, PHI, 4th Edition 2012.
- 2. A.D. Helfrick and W.D. cooper, Modern Electronic Instrumentation & Measurement Techniques, PHI 2001
- 3. Hermann K.P. Neubert, "Instrument Transducers" 2nd Edition 2012, Oxford University Press.

Basics Data Structure and Algorithms

	Course Outcome (CO)	Bloom's Knowledge Level (KL)
	At the end of course , the student will be able to understand	
CO 1	Understand and analyze the time and space complexity of an algorithm	K2, K4
CO 2	Understand and implement fundamental algorithms (including sorting algorithms, graph algorithms, and dynamic programming)	K2, K3
CO 3	Discuss various algorithm design techniques for developing algorithms	K1, K2
CO 4	Discuss various searching, sorting and graph traversal algorithms	K2, K3
CO 5	Understand operation on Queue, Priority Queue, D-Queue.	K ₂

K1- Remember, K2- Understand, K3- Apply, K4- Analyze, K5- Evaluate, K6- Create

Course					Prog	gramm	e Out	come (PO)				PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO2	3	3	3	2	2	-	-	-	-	3	3	3	3	3
CO3	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO4	3	3	3	3	3	-	-	-	-	3	3	3	3	3
C05	3	3	3	3	3	-	-	-	-	2	3	3	3	3
РО														
Target	3	3	3	2.8	2.4	-	-	-	-	2.8	3	3	3	3

	Basics Data Structure and Algorithms	
	Detailed Syllabus	
Unit	Торіс	Proposed Lecture
Ι	Introduction to data structure and Algorithms: Performance analysis of Algorithm, time complexity, Big-oh notation, Elementary data organization data structure operations, Recurrences, Arrays, Operation on arrays, representation of arrays in memory, single dimensional and multidimensional arrays, spare matrices, Character storing in C, String operations.	08
Π	Stack And Queue and Link List: Stack operation, PUSH and POP, Array representation of stacks, Operation associated with stacks Application of stacks, Recursion, Polish experession, Representation Queue, operation on Queue, Priority Queue, D-Queue, Singly and circularly linked list, List operations Lists implementations	08
Ш	Trees : Basic terminology, Binary Trees, Binary tree representation, Algebraic/expressions, Complete Binary Trees, Extended binary tree, representing binary tress in memory, linked representation of Binary trees, Traversing binary trees & Searching in binary trees, Inserting in binary search trees, Complexity of searching algorithm, Heaps, general trees, Threaded binary tree.	08
IV	Graphs: Terminology & representations, Graphs & Multigraphs, Directed Graphs, Sequential representation of graphs, adjacency Matrices, Transversal, connected component and spanning trees, Minimum Cost spanning tree, Prims and Kruskal Algorithm, BFS, DFS, Shortest path and transitive closure, Activity networks, topological sort and critical paths.	08
V	Searching and Sorting: Linear search, binary Search, Internal and External sorting, Bubble sorting, selection sort, Insertion sort, quick sort, Two way merge sort, Heap sort, sorting on different keys, practical consideration for internal sorting, External Sorting, Storage Devices : Magnetic tapes, Disk Storage, Sorting with disks and Indexing techniques, introduction to B tree and B+ tree, File organization and storage management, Introduction to hoisting.	08
Text books	;:	
 Thomas F Horowitz Weiss, "E Basse, "cc Lipschutz Aho, hopo 	I. Coreman, Charles E. Leiserson and Ronald L. Rivest, Introduction to Algorithms, PHI. and Sahani, "Fundamentals of Data Structures", Galgotia Publication. bata Structure & Algorithm Analysis in C", Addision Wesley. computer Algorithms: Introduction to Design & Analysis", Addision Wesley. , "Data structure, "Schaum series. cropt, Ullman, "Data Structure & Algorithm", Addision Wesley.	

Introduction to Soft Computing

	Course Outcome (CO)	Bloom's Knowledge Lev	vel (KL)						
	At the end of course, the student will be able to understand								
CO 1	Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory.	K1, K2							
CO 2	Understand the concepts of fuzzy sets, knowledge representation using fuzzy rules, approximate reasoning, fuzzy inference systems, and fuzzy logic	K2, K3							
CO 3	Describe with genetic algorithms and other random search procedures useful while seeking global optimum in selflearning situations.	K4							
CO 4	Understand appropriate learning rules for each of the architectures and learn several neural network paradigms and its applications.	K2, K3							
CO 5	CO 5 Develop some familiarity with current research problems and research methods in Soft Computing Techniques. K5, K6								
	Introduction to Soft Computing								
	Detailed Syllabus								
Unit	Торіс								
Ι	Introduction to Soft Computing, ARTIFICIAL NEURAL NETWORKS Basic concepts - Single layer perception - Multilayer Perception - Supervised Back propagation networks - Kohnen's self-organizing networks - Hopfield networks - Market Perception - Supervised	1 and Unsupervised learning – twork.	08						
II	FUZZY SYSTEMS Fuzzy sets, Fuzzy Relations and Fuzzy reasoning, Fuzzy functions - Decompose languages - Fuzzy control methods - Fuzzy decision making.	sition - Fuzzy automata and	08						
III	III NEURO - FUZZY MODELING Adaptive networks based Fuzzy interface systems - Classification and Regression Trees - Data clustering algorithms - Rule based structure identification - Neuro-Fuzzy controls - Simulated annealing – Evolutionary computation								
IV GENETIC ALGORITHMS 08 Survival of the Fittest - Fitness Computations - Cross over - Mutation - Reproduction - Rank method - Rank space method. 08									
V	space metnod. APPLICATION OF SOFT COMPUTING Optimiation of traveling salesman problem using Genetic Algorithm, Genetic algorithm based Internet Search Techniques, Soft computing based hybrid fuzzy controller, Introduction to MATLAB Environment for Soft computing Techniques.								

Text books:

1.An Introduction to Genetic Algorithm Melanic Mitchell (MIT Press)

2.Evolutionary Algorithm for Solving Multi-objective, Optimization Problems (2nd Edition), Collelo, Lament, Veldhnizer (Springer)

3.Fuzzy Logic with Engineering Applications Timothy J. Ross (Wiley)

4.Neural Networks and Learning Machines Simon Haykin (PHI)

5. Sivanandam, Deepa, "Principles of Soft Computing", Wiley

6.Jang J.S.R, Sun C.T. and Mizutani E, "Neuro-Fuzzy and Soft computing", Prentice Hall

7. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill

8.Laurene Fausett, "Fundamentals of Neural Networks", Prentice Hall

9.D.E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley

10.Wang, "Fuzzy Logic", Springer

Course Code:													APO	APO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	2	2	2	2	2	2	1	-	-	-	-	-	2	2
CO2	2	2	3	1	2	2	1	-	1	1	-	-	2	2
CO3	2	2	2	2	3	3	1	-	-	-	-	-	2	2
CO4	2	2	3	1	3	3	1	-	1	1	3	-	2	2
CO5	2	2	3	2	2	2	1	-	1	1	-	-	2	2

Anal	og Electronics Circuits	3L:1T:0P	4 Credits				
Unit	Topics	•	L	Lecture			
			S	5			
Ι	Diode circuits, amplifier models: Voltage amplifier, curred amplifier and trans-resistance amplifier. biasing schemes for stability, various configurations (such as CE/CS, CB/CG, C signal analysis, low frequency transistor models, estimation output resistance etc., design procedure for particular specifi of multistage amplifiers.	ent amplifier, trans-c or BJT and FET amp CC/CD) and their fea of voltage gain, input fications, low frequen	onductance 8 lifiers, bias tures, small resistance, cy analysis	3			
П	High frequency transistor models, frequency response of single stage and multistage amplifiers, cascode amplifier, various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues, feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.						
III	Oscillators: Review of the basic concept, Barkhausen criter Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc	rion, RC oscillators (c.), non-sinusoidal osc	phase shift, 8 cillators.	3			
IV	Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load, differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR, Op-Amp design: Design of differential amplifier for a given specification, design of gain stages and output stages, compensation.						
V	Op-Amp applications: Review of inverting and non-inverdifferentiator, summing amplifier, precision rectifier, Schractive filters: Low pass, high pass, band pass and band stop,	erting amplifiers, intendent in the second s	egrator and 8 pplications,	3			

1. J.V. Wait, L.P. Huelsman and GA Korn, "Introduction to Operational Amplifier theory and applications," McGraw Hill, 1992.

2. J. Millman and A. Grabel, "Microelectronics," 2ndedition, McGraw Hill, 1988.

3. P. Horowitz and W. Hill, "The Art of Electronics," 2ndedition, Cambridge University Press, 1989.

4. A.S. Sedra and K.C. Smith, "Microelectronic Circuits," Saunder's College11 Publishing, 4th edition.

5. Paul R. Gray and Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits," John Wiley, 3rd edition.

6. Muhammad H. Rashid, "Electronic Devices and Circuits," Cengage publication, 2014.

Course Outcomes:

At the end of this course students will demonstrate the ability to:

- 1. Understand the characteristics of diodes and transistors.
- 2. Design and analyze various rectifier and amplifier circuits.
- 3. Design sinusoidal and non-sinusoidal oscillators.
- 4. Understand the functioning of OP-AMP and design OP-AMP based circuits.
- 5. Design LPF, HPF, BPF, BSF.

Elect	ronics Engineering	3L:1T:0P	4 Credi	ts
Unit	Topics			Lect ures
I	PN junction diode: Introduction of semiconductor mate Depletion layer, V-I characteristics, ideal and practical, diode equivalent circuits, transition and diffusion capacitance mechanism (Zener and avalanche).	erials; Semiconducto resistance, capacitan e, Zener diodes b	or diode: nce, diode reakdown	8
Π	Diode application: Series, parallel and series, parallel diod wave rectification, clippers, clampers, Zener diode as shun circuits special purpose two terminal devices : light-emittin diodes, tunnel diodes, liquidcrystal displays.	e configuration, half t regulator, voltage- ng diodes, Varactor	f and full multiplier (Varicap)	8
Ш	Bipolar junction transistors and field effect transistor: Bipolar construction, operation, amplification action, common base collector configuration dc biasing BJTs: operating point, fix divider bias configuration. Collector feedback, emitter- stabilization. CE, CB, CC amplifiers and AC analysis of Model), Field effect transistor: Construction and characteristic amplifier, MOSFET (depletion and enhancement) type, transfer	junction transistor: ' e, common emitter, ed-bias, emitter bias follower configurat single stage CE am c of JFETs. AC analy er characteristic.	Transistor common , voltage- ion. Bias plifier (re ysis of CS	8
IV	Operational amplifiers: Introduction and block diagram of characteristics of Op-Amp, differential amplifier circuits (inverting amplifier, non-inverting amplifier, unity gain a integrator, differentiator), OpAmp parameters: input offset input biased current, input offset current differential and comm	f Op-Amp, ideal & , practical Op-Amp mplifier, summing voltage, output offse non-mode operation.	practical p circuits amplifier, t voltage,	8
V	Electronic instrumentation and measurements: Digital vol techniques digital multimeters: Introduction Oscilloscope: CRT, block diagram of oscilloscope, simple, measurement frequency using CRO, introduction of digital storage oscillos with analog oscilloscope.	Itmeter: Introduction introduction, basic of voltage, current j cope and compariso	n, RAMP principle, phase and n of DSO	8

Text /Reference Books:

- 1. Robert L. Boylestand / Louis Nashelsky, "Electronic Devices and Circuit Theory," Latest Edition, Pearson Education.
- 2. H S Kalsi, "Electronic Instrumentation", Latest Edition, TMH Publication.

3. Meetidehran/ A.K. singh "fundamental of electronics Engineering", New age international publisher.

Course Outcomes:

At the end of this course students will demonstrate the ability to:

- 1. Understand the concept of PN junction and special purpose diodes.
- 2. Study the application of conventional diode and semiconductor diode.
- 3. Analyse the I-V characteristics of BJT and FET.
- 4. Analyzethe of Op-Amp, amplifiers, integrator, and differentiator.
- 5. Understand the concept of digital storage oscilloscope and compare of DSO with analog oscilloscope

С	O \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
	CO1	3	3	2	-	3	-	1	-	-	-	-	1	3	3
	CO2	3	3	2	-	3	-	1	-	-	-	-	1	3	3
	CO3	3	3	2	-	3	-	1	-	-	-	-	1	3	3
	CO4	3	3	2	-	3	-	1	-	-	-	-	1	3	3
	CO5	3	3	2	-	3	-	1	-	-	-	-	1	3	3

Universal Human Values and Professional Ethics

3 0 0 3

Objectives:		
	1.	To help students distinguish between values and skills, and understand the need, basic guidelines, content and process of value education.
	2.	To help students initiate a process of dialog within themselves to know what they 'really want to be' in their life and profession
	3.	To help students understand the meaning of happiness and prosperity for a human being.
	4.	To facilitate the students to understand harmony at all the levels of human living, and live accordingly.
	5.	To facilitate the students in applying the understanding of harmony in existence in their profession and lead an ethical life

Course Outcome:

On completion of this course, the students will be able to

- 1. Understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content and process of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society
- 2. Distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Coexistence of Self and Body.
- 3. Understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society
- 4. Understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.
- 5. Distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.

Catalogue Description

Every human being has two sets of questions to answer for his life: a) what to do? and, b) how to do?. The first set pertains to the value domain, and the other to the skill domain. Both are complimentary, but value domain has a higher priority. Today, education has become more and more skill biased, and hence, the basic aspiration of a human being, that is to live with happiness and prosperity, gets defeated, in spite of abundant technological progress. This course is aimed at giving inputs that will help to ensure the right understanding and right feelings in the students in their life and profession, enabling them to lead an ethical life. In this course, the students learn the process of selfexploration, the difference between the Self and the Body, the naturally acceptable feelings in relationships in a family, the comprehensive human goal in the society, the mutual fulfillment in the nature and the coexistence in existence. As a natural outcome of such inputs, they are able to evaluate an ethical life and profession ahead.

UNIT-1	Course Introduction - Need, Basic Guidelines, Content and Process for Value Education
	Understanding the need, basic guidelines, content and process for Value Education,
	Self-Exploration-what is it? - its content and process; 'Natural Acceptance' and
	Experiential Validation- as the mechanism for self exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.
UNIT-2	Understanding Harmony in the Human Being - Harmony in Myself
	Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer),
	Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
UNIT-3	Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship
	Understanding harmony in the Family- the basic unit of human interaction, Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship, Understanding the meaning of Vishwas; Difference between intention and competence, Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, Understanding the harmony in the society (society being an extension of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals, Visualizing a universal harmonious order in society-Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family!.
UNIT-4	Understanding Harmony in the Nature and Existence - Whole existence as Co-existence
	Understanding the harmony in the Nature, Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature, Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.
UNIT-5	Implications of the above Holistic Understanding of Harmony on Professional Ethics
	Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly

	producti manage: Human technolo organiza	ion systems, technologies and management models, Case studies of typical holistic technologies, ment models and production systems, Strategy for transition from the present state to Universal Order: a) At the level of individual: as socially and ecologically responsible engineers, ogists and managers, b) At the level of society: as mutually enriching institutions and ations.
Text Books:		
	1.	R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.
References:		
	1.	Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA
	2.	E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
	3.	Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
	4.	Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth – Club of Rome's report, Universe Books.
	5.	A Nagraj, 1998, Jeevan Vidya Ek Parichay, Divya Path Sansthan, Amarkantak.
	6.	P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
	7.	A N Tripathy, 2003, Human Values, New Age International Publishers.
	8.	SubhasPalekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) KrishiTantraShodh, Amravati.
	9.	E G Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for
		Scientists & Engineers , Oxford University Press
	10. 11. 12.	M Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethics (including Humar Values), Eastern Economy Edition, Prentice Hall of India Ltd. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow Reprinted 2008.

													PSO	
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1	PSO2
CO1	2	1	2	2	2	2	2	3	3	2	1	3	1	1
CO2	2	1	2	2	2	2	3	3	2	2	1	3	1	1
CO3	2	1	2	3	3	2	3	3	2	2	1	3	1	1
CO4	2	1	2	2	2	3	3	3	3	2	1	3	1	1
CO5	2	1	2	3	3	2	3	3	3	2	1	3	1	1

Mode of Evaluation:

Assignment/ Seminar/Continuous Assessment Test/Semester End Exam

Technical Communication

Course Outcomes

- 1. Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as Engineers.
- 2. Students will utilize the technical writing for the purposes of Technical Communication and its exposure in various dimensions.
- 3. Students would imbibe inputs by presentation skills to enhance confidence in face of diverse audience.
- 4. Technical communication skills will create a vast know-how of the application of the learning to promote their technical competence.
- 5. It would enable them to evaluate their efficacy as fluent & efficient communicators by learning the voice-dynamics.

L T P 2 1 0

Unit -1 Fundamentals of Technical Communication:

Technical Communication: Features; Distinction between General and Technical Communication; Language as a tool of Communication; Dimensions of Communication: Reading & comprehension; Technical writing: sentences; Paragraph; Technical style: Definition, types & Methods; The flow of Communication: Downward; upward, Lateral or Horizontal; Barriers to Communication.

Unit - II Forms of Technical Communication:

Technical Report: Definition & importance; Thesis/Project writing: structure & importance; synopsis writing: Methods; Technical research Paper writing: Methods & style; Seminar & Conference paper writing; Expert Technical Lecture: Theme clarity; Analysis & Findings; 7 Cs of effective business writing: concreteness, completeness, clarity, conciseness, courtesy, correctness, consideration, C.V./Resume writing; Technical Proposal: Types, Structure & Draft.

Unit - III Technical Presentation: Strategies & Techniques

Presentation: Forms; interpersonal Communication; Class room presentation; style; method; Individual conferencing: essentials: Public Speaking: method; Techniques: Clarity of substance; emotion; Humour; Modes of Presentation; Overcoming Stage Fear; Audience Analysis & retention of audience interest; Methods of Presentation: Interpersonal; Impersonal; Audience Participation: Quizzes & Interjections.

Unit - IV Technical Communication Skills:

Interview skills; Group Discussion: Objective & Method; Seminar/Conferences Presentation skills: Focus; Content; Style; Argumentation skills: Devices: Analysis; Cohesion & Emphasis; Critical thinking; Nuances: Exposition narration & Description; effective business communication competence: Grammatical; Discourse competence: combination of expression & conclusion; Socio-linguistic competence: Strategic competence: Solution of communication problems with verbal and non verbal means.

Unit - V Dimensions of Oral Communication & Voice Dynamics:

Code and Content; Stimulus & Response; Encoding process; Decoding process; Pronunciation Etiquette; Syllables; Vowel sounds; Consonant sounds; Tone: Rising tone; Falling Tone; Flow in Speaking; Speaking with a purpose; Speech & personality; Professional Personality Attributes: Empathy; Considerateness; Leadership; Competence.

Reference Books

- 1. Technical Communication Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2007, New Delhi.
- 2. Personality Development and Soft Skills by Barun K. Mitra, OUP, 2012, New Delhi.
- 3. Spoken English- A Manual of Speech and Phonetics by R.K.Bansal & J.B.Harrison, Orient Blackswan, 2013, New Delhi.
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Practical Communication: Process and Practice by L.U.B. Pandey; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, 2014, Delhi.
- 6. Modern Technical Writing by Sherman, Theodore A (et.al); Apprentice Hall; New Jersey; U.S.
- 7. A Text Book of Scientific and Technical Writing by S.D. Sharma; Vikas Publication, Delhi.
- 8. Skills for Effective Business Communication by Michael Murphy, Harward University, U.S.
- 9. Business Communication for Managers by Payal Mehra, Pearson Publication, Delhi.

Course					- Prog	ramme	Outcou	me (PO	<u>) </u>				PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	-	-	-	-	-	-	-	-	2	3	-	3	-	-
CO-2	-	-	-	-	-	-	-	-	2	3	-	3	-	-
CO-3	-	-	-	-	-	-	-	-	2	3	-	3	-	-
CO-4	-	-	-	-	-	-	-	-	2	3	-	3	-	-
CO-5	-	-	-	-	-	-	-	-	2	3	-	3	-	-
PO	-	-	-	-	-	-	-	-	2	3	-	3	-	-

	COMPUTER SYSTEM SECURITY							
Course Outcome (CO) Bloom's Knowledge Leve								
	At the end of course , the student will be able to understand							
CO 1	To discover software bugs that pose cyber security threats and to explain how to fix the bugs to mitigate such threats	K 1, K 2						
CO 2	To discover cyber attack scenarios to web browsers and web servers and to explain how to mitigate such threats	K ₂						
CO 3	To discover and explain mobile software bugs posing cyber security threats, explain and recreate exploits, and to explain mitigation techniques.							
CO 4	To articulate the urgent need for cyber security in critical computer systems, networks, and world wide web, and to explain various threat scenarios	K 4						
CO 5 To articulate the well known cyber attack incidents, explain the attack scenarios, and explain mitigation techniques.								
	DETAILED SYLLABUS	3-1-0						
Unit	Торіс							
I	 Computer System Security Introduction: Introduction, What is computer security and what to 1 earn?, Sample Attacks, The Marketplace for vulnerabilities, Error 404 Hacking digital India part 1 chase. Hijacking & Defense: Control Hijacking ,More Control Hijacking attacks integer overflow ,More Control Hijacking attacks format string vulnerabilities, Defense against Control Hijacking - Platform Defenses, Defense against Control Hijacking - Run-time Defenses, Advanced Control Hijacking attacks. 							
II	Confidentiality Policies: Confinement Principle ,Detour Unix user IDs process IDs and privileges , More on confinement techniques ,System call interposition ,Error 404 digital Hacking in India part 2 chase , VM based isolation ,Confinement principle ,Software fault isolation , Rootkits ,Intrusion Detection Systems	08						
Ш	Secure architecture principles isolation and leas: Access Control Concepts, Unix and windows access control summary, Other issues in access control, Introduction to browser isolation. Web security landscape : Web security definitions goals and threat models, HTTP content rendering. Browser isolation .Security interface, Cookies frames and frame busting, Major web server threats, Cross site request forgery, Cross site scripting, Defenses and protections against XSS, Finding vulnerabilities, Secure development.	08						
IV	Basic cryptography: Public key cryptography ,RSA public key crypto ,Digital signature Hash functions ,Public key distribution ,Real world protocols ,Basic terminologies ,Email security certificates ,Transport Layer security TLS ,IP security , DNS security.	08						
V	Internet Infrastructure: Basic security problems, Routing security, DNS revisited, Summary of weaknesses of internet security, Link layer connectivity and TCP IP connectivity, Packet filtering firewall, Intrusion detection.	08						
Text books: 1. William Stallings, Network Security Essentials: Applications and Standards, Prentice Hall, 4th edition, 2010. 2. Michael T. Goodrich and Roberto Tamassia, Introduction to Computer Security, Addison Wesley, 2011. 3. William Stallings, Network Security Essentials: Applications and Standards, Prentice Hall, 4th edition, 2010. 4. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography, CRC Press, 2001.

Mapped With : <u>https://ict.iitk.ac.in/product/computer-system-security/</u>

	PYTHON PROGRAMMING							
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)						
	At the end of course , the student will be able to understand							
CO 1	To read and write simple Python programs.	K 1, K 2						
CO 2	To develop Python programs with conditionals and loops.	K2, K4						
CO 3	To define Python functions and to use Python data structures lists, tuples, dictionaries	K ₃						
CO 4	To do input/output with files in Python	K_2						
CO 5	To do searching ,sorting and merging in Python	K2, K4						
	DETAILED SYLLABUS	3-1-0						
U nit	Торіс	Proposed Lecture						
Ι	, Elements of Python, Type Conversion. Basics: Expressions, Assignment Statement, Arithmetic Operators, Operator Precedence, Boolean Expression.	Vð						
II	 Conditionals: Conditional statement in Python (if-else statement, its working and execution), Nested-if statement and Elif statement in Python, Expression Evaluation & Float Representation. Loops: Purpose and working of loops , While loop including its working, For Loop , Nested Loops , Break and Continue. 	08						
III	 Break and Continue. II Function: Parts of A Function, Execution of A Function, Keyword and Default Arguments, Scope Rules. Strings: Length of the string and perform Concatenation and Repeat operations in it. Indexing and Slicing of Strings. Python Data Structure: Tuples, Unpacking Sequences, Lists, Mutable Sequences, List Comprehension, Sets, Dictionaries Higher Order Functions: Treat functions as first class Objects. Lembda Expressions 							
ĪV	 Sieve of Eratosthenes: generate prime numbers with the help of an algorithm given by the Greek Mathematician named Eratosthenes, whose algorithm is known as Sieve of Eratosthenes. File I/O : File input and output operations in Python Programming Exceptions and Assertions Modules : Introduction , Importing Modules , Abstract Data Types : Abstract data types and ADT interface in Python Programming. Classes : Class definition and other operations in the classes , Special Methods (such as _init_, _str_, comparison methods and Arithmetic methods etc.) , Class Example , Inheritance , Inheritance and OOP. 	08						
	Iterators & Recursion: Recursive Fibonacci, Tower Of Hanoi	08						

Text books:

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist'', 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)

2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.

3.John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013

4.Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

5. Timothy A. Budd, —Exploring Pythonl, Mc-Graw Hill Education (India) Private Ltd., 2015.

6.Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012.

7. Charles Dierbach, —Introduction to Computer Science using Python: A Computational ProblemSolving Focus, Wiley India Edition, 2013.

8.Paul Gries, Jennifer Campbell and Jason Montojo, —Practical Programming: An Introduction to Computer Science using Python 31, Second edition, Pragmatic Programmers, LLC, 2013.

Mapped With : <u>https://ict.iitk.ac.in/product/python-programming-a-practical-approach/</u>

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	1	2	1	3							1	1	1
COI	5	1	2	1	5	-	-	-	-	-	-	1	1	1
CO2	3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO3	3	3	2	2	3	-	-	-	-	-	-	2	2	2
CO4	3	2	2	2	3	-	-	-	-	-	-	2	2	2
CO5	3	2	2	3	3	-	-	-	-	-	-	2	2	2

FIFTH SEMESTER (DETAILED SYLLABUS)

Database Management System

	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)					
At the end of course , the student will be able to:								
CO 1	Apply knowledge of database for real life applications.		K_3					
CO 2	Apply query processing techniques to automate the real time problems of databases.							
CO 3	Identify and solve the redundancy problem in database tables using normalization.							
CO 4	Understand the concepts of transactions, their processing so they of database management issues including data integrity, security a	will familiar with broad range and recovery.	K ₂ , K ₄					
CO 5	Design, develop and implement a small database project using database	abase tools.	K ₃ , K ₆					

Course Code:		Programme Outcome (PO)												
KCS-552	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	-	-	-	2	-	-	-	-	-	-	2	2	-
C02	2	-	3	2	3	-	-	-	-	3	2	-	-	3
C03	3	-	-	-	3	-	-	-	-	-	-	-	-	-
C04	2	3	-	3	-	-	-	-	-	-	-	-	-	2
C05	2	3	-	3	-	_	-	-	-	-	-	-	-	2
PO Target	2.4	3	3	2.6	2.6	0	0	0	0	3	2	2	2	2.3

DETAILED SYLLABUS

3-1-0

Unit	Торіс	Proposed Lecture
I	Introduction: Overview, Database System vs File System, Database System Concept and Architecture, Data Model Schema and Instances, Data Independence and Database Language and Interfaces, Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationship of Higher Degree.	08

п	Relational data Model and Language: Relational Data Model Concepts, Integrity Constraints, Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction on SQL: Characteristics of SQL, Advantage of SQL. SQl Data Type and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations, Joins, Unions, Intersection, Minus, Cursors, Triggers, Procedures in SQL/PL SQL	08
III	Data Base Design & Normalization: Functional dependencies, normal forms, first, second, 8 third normal forms, BCNF, inclusion dependence, loss less join decompositions, normalization using FD, MVD, and JDs, alternative approaches to database design	08
IV	Transaction Processing Concept: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery, Checkpoints, Deadlock Handling. Distributed Database: Distributed Data Storage, Concurrency Control, Directory System.	08
v	Concurrency Control Techniques: Concurrency Control, Locking Techniques for Concurrency Control, Time Stamping Protocols for Concurrency Control, Validation Based Protocol, Multiple Granularity, Multi Version Schemes, Recovery with Concurrent Transaction, Case Study of Oracle.	08
Text bo	ooks:	
1.	Korth, Silbertz, Sudarshan," Database Concepts", McGraw Hill	
2.	Date C J, "An Introduction to Database Systems", Addision Wesley 3. Elmasri, Navathe, "	
Fur	adamentals of Database Systems", Addision Wesley	
4.	O'Neil, Databases, Elsevier Pub.	
). 2	KAWAKKISHINAN Database Management Systems", McGraw Hill	
0. 7	Pinin C. Desai, "An Introduction to Database Systems" Cagactia Publications	
2 /. 2	Majumdar & Bhattacharva "Database Management System" TMH	
0.	Majundar & Dhataenarya, Database Mahagement System, 11911	

Compiler Design									
	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)						
At the end of course , the student will be able to:									
CO 1 Acquire knowledge of different phases and passes of the compiler and also able to use the compiler tools like LEX, YACC, etc. Students will also be able to design different types of compiler tools to meet the requirements of the realistic constraints of compilers.									
CO 2	Understand the parser and its types i.e. Top-Down and Bottom-up parsers and construction of LL, SLR, CLR, and LALR parsing table.								
CO 3	Implement the compiler using syntax-directed translation method synthesized and inherited attributes.	l and get knowledge about the	K4, K5						
CO 4	Acquire knowledge about run time data structure like symbol ta techniques used in that.	ble organization and different	K ₂ , K ₃						
CO 5	Understand the target machine's run time environment, its instruct and techniques used for code optimization.	tion set for code generation	K ₂ , K ₄						

Course Code:	Programme Outcome (PO)													PSO/ APO
KCS-552	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	-	-	-	2	-	-	-	-	-	-	2	2	-
C02	2	-	3	2	3	-	-	-	-	3	2	-	-	3
C03	3	-	-	-	3	-	-	-	-	-	-	-	-	-
C04	2	3	-	3	-	-	-	-	-	-	-	-	-	2
C05	2	3	-	3	_	-	-	-	-	-	-	-	-	2
PO Target	2.4	3	3	2.6	2.6	0	0	0	0	3	2	2	2	2.3

UnitTopicPropose LectureIIntroduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars derivation and parse08		3-0-0	
I Introduction to Compiler: Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars derivation and parse	Unit	Торіс	Proposed Lecture
trees, capabilities of CFG.	Ι	Introduction to Compiler : Phases and passes, Bootstrapping, Finite state machines and regular expressions and their applications to lexical analysis, Optimization of DFA-Based Pattern Matchers implementation of lexical analyzers, lexical-analyzer generator, LEX compiler, Formal grammars and their application to syntax analysis, BNF notation, ambiguity, YACC. The syntactic specification of programming languages: Context free grammars, derivation and parse trees, capabilities of CFG.	08

II	Basic Parsing Techniques: Parsers, Shift reduce parsing, operator precedence parsing, top down parsing, predictive parsers Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables.	08					
ш	Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntaxdirected Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations and case statements.	08					
IVSymbol Tables: Data structure for symbols tables, representing scope information. Run-Time Administration: Implementation of simple stack allocation scheme, storage allocation in block structured language. Error Detection & Recovery: Lexical Phase errors, syntactic phase errors semantic errors.							
V	Code Generation: Design Issues, the Target Language. Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, Code Generator. Code optimization: Machine-Independent Optimizations, Loop optimization, DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.	08					
Text bo	ooks:						
1. Aho,	Sethi & Ullman, "Compilers: Principles, Techniques and Tools", Pearson Education						
2. K. M.	nuneeswaran, Compiler Design, First Edition, Oxford University Press						
3. J.P. I	3. J.P. Bennet, "Introduction to Compiler Techniques", Second Edition, McGraw-Hill,2003.						
4. Henl	Alblas and Albert Nymeyer, "Practice and Principles of Compiler Building with C", PHI, 2001.						
5. V Ra	nghvan, "Principles of Compiler Design", McGraw-Hill,						
6. Kenn	neth Louden," Compiler Construction", Cengage Learning.						
7. Char	les Fischer and Ricard LeBlanc," Crafting a Compiler with C", Pearson Education						

Design and Analysis of Algorithm									
	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)						
At the end of course , the student will be able to:									
CO 1	Design new algorithms, prove them correct, and analyze their asymptotic and absolute runtime and memory demands.								
CO 2	Find an algorithm to solve the problem (create) and prove that the algorithm solves the problem correctly (validate).								
CO 3	Understand the mathematical criterion for deciding whether an algorithm is efficient, and know many practically important problems that do not admit any efficient algorithms.								
CO 4	Apply classical sorting, searching, optimization and graph algorith	nms.	K ₂ , K ₄						
CO 5	Understand basic techniques for designing algorithms, including divide-and-conquer, and greedy.	the techniques of recursion,	K ₂ , K ₃						

Course Code:		Programme Outcome (PO)												
KC3503	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	-	3	-	2	-	-	-	1	-	-	-	3	-	1
CO2	-	3	-	3	2	-	-	-	-	-	-	2	1	1
CO3	3	1	3	-	2	-	-	-	1	1	1	2	-	2
C04	2	-	-	-	-	-	-	-	1	-	1	1	-	-
C05	-	-	-	1	2	-	-	-	-	-	-	1	1	-
PO Target	2.5	2.3	3	2	2	-	-	-	1	0.5	1	1.8	1	1.3

3-1-0 Topic Unit Proposed Lecture Introduction: Algorithms, Analyzing Algorithms, Complexity of Algorithms, Growth of Functions, Performance Measurements, Sorting and Order Statistics - Shell Sort, Quick Sort, Ι 08 Merge Sort, Heap Sort, Comparison of Sorting Algorithms, Sorting in Linear Time. Advanced Data Structures: Red-Black Trees, B – Trees, Binomial Heaps, Fibonacci Heaps, Π 08 Tries, Skip List Divide and Conquer with Examples Such as Sorting, Matrix Multiplication, Convex Hull and Searching. Greedy Methods with Examples Such as Optimal Reliability Allocation, Knapsack, Minimum ш 08 Spanning Trees - Prim's and Kruskal's Algorithms, Single Source Shortest Paths - Dijkstra's and Bellman Ford Algorithms.

IV	Dynamic Programming with Examples Such as Knapsack. All Pair Shortest Paths – Warshal's and Floyd's Algorithms, Resource Allocation Problem. Backtracking, Branch and Bound with Examples Such as Travelling Salesman Problem, Graph Coloring, n-Queen Problem, Hamiltonian Cycles and Sum of Subsets.	08
V	Selected Topics: Algebraic Computation, Fast Fourier Transform, String Matching, Theory of NPCompleteness, Approximation Algorithms and Randomized Algorithms	08
Tex	books:	
1.	Thomas H. Coreman, Charles E. Leiserson and Ronald L. Rivest, "Introduction to Algorithms", Printice I	Hall of
	India.	
2.	E. Horowitz & S Sahni, "Fundamentals of Computer Algorithms",	
3.	Aho, Hopcraft, Ullman, "The Design and Analysis of Computer Algorithms" Pearson Education, 2008.	
4.	LEE "Design & Analysis of Algorithms (POD)",McGraw Hill	
5.	Richard E.Neapolitan "Foundations of Algorithms" Jones & Bartlett Learning	
6.	Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, 2005.	
7.	Michael T Goodrich and Roberto Tamassia, Algorithm Design: Foundations, Analysis, and Internet Exam	nples,
	Second Edition, Wiley, 2006.	
8.	Harry R. Lewis and Larry Denenberg, Data Structures and Their Algorithms, Harper Collins, 1997	
9.	Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition, Addison Wesley, 2011.	
10.	Harsh Bhasin,"Algorithm Design and Analysis", First Edition, Oxford University Press.	
11.	Gilles Brassard and Paul Bratley, Algorithmics: Theory and Practice, Prentice Hall, 1995.	

	Data Analytics		
	Course Outcome (CO)	Bloom's Knowledge Lev	vel (KL)
At the end	of course , the student will be able to :		
CO 1	Describe the life cycle phases of Data Analytics throug building.	h discovery, planning and	K1,K2
CO 2	Understand and apply Data Analysis Techniques.		K2, K3
CO 3	Implement various Data streams.		K3
CO 4	Understand item sets, Clustering, frame works & Visualizat	ions.	K2
CO 5	Apply R tool for developing and evaluating real time applic	cations.	K3,K5,K6

Course Code:		Programme Outcome (PO)													
RC3503	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
C01	-	3	-	2	-	-	-	1	-	-	-	3	-	1	
C02	-	3	-	3	2	-	-	-	-	-	-	2	1	1	
CO3	3	1	3	-	2	-	-	-	1	1	1	2	-	2	
CO4	2	-	-	-	-	-	-	-	1	-	1	1	-	-	
C05	-	-	-	1	2	-	-	-	_	-	-	1	1	-	
PO Target	2.5	2.3	3	2	2	-	-	-	1	0.5	1	1.8	1	1.3	

3-0-0

Unit	Торіс	Proposed
		Lecture
Ι	Introduction to Data Analytics: Sources and nature of data, classification of data	
	(structured, semi-structured, unstructured), characteristics of data, introduction to Big	
	Data platform, need of data analytics, evolution of analytic scalability, analytic process	
	and tools, analysis vs reporting, modern data analytic tools, applications of data analytics.	08
	Data Analytics Lifecycle: Need, key roles for successful analytic projects, various	
	phases of data analytics lifecycle – discovery, data preparation, model planning, model	
	building, communicating results, operationalization.	

II	Data Analysis: Regression modeling, multivariate analysis, Bayesian modeling, inference and Bayesian networks, support vector and kernel methods, analysis of time series: linear systems analysis & nonlinear dynamics, rule induction, neural networks: learning and generalisation, competitive learning, principal component analysis and neural networks, fuzzy logic: extracting fuzzy models from data, fuzzy decision trees, stochastic search methods.	08
ш	Mining Data Streams: Introduction to streams concepts, stream data model and architecture, stream computing, sampling data in a stream, filtering streams, counting distinct elements in a stream, estimating moments, counting oneness in a window, decaying window, Real-time Analytics Platform (RTAP) applications, Case studies – real time sentiment analysis, stock market predictions.	08
IV	Frequent Itemsets and Clustering: Mining frequent itemsets, market based modelling, Apriori algorithm, handling large data sets in main memory, limited pass algorithm, counting frequent itemsets in a stream, clustering techniques: hierarchical, K-means, clustering high dimensional data, CLIQUE and ProCLUS, frequent pattern based clustering methods, clustering in non-euclidean space, clustering for streams and parallelism.	08
V	Frame Works and Visualization: MapReduce, Hadoop, Pig, Hive, HBase, MapR, Sharding, NoSQL Databases, S3, Hadoop Distributed File Systems, Visualization: visual data analysis techniques, interaction techniques, systems and applications. Introduction to R - R graphical user interfaces, data import and export, attribute and data types, descriptive statistics, exploratory data analysis, visualization before analysis, analytics for unstructured data.	08
Text bo	ooks and References:	
1. Mie	chael Berthold, David J. Hand, Intelligent Data Analysis, Springer	
2. An	and Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge Universit	ty Press.
3. Bil	l Franks, Taming the Big Data Tidal wave: Finding Opportunities in Huge Data Streams with	h Advanced
Ana 4 Joh	alytics, John Wiley & Sons.	otion
4. Jon 5 Day	in Garrett, Data Analytics for 11 Networks : Developing innovative Use Cases, Pearson Educ	tion Series
J. Dav Joh	n Wiley	ation series,
6. Fra	nk J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Bus	iness Series
7. Col	lleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analy	sis",
Elso e Mi	evier	
8. MIC 9 Par	chael Berthold, David J. Hand, Intelligent Data Analysis, Springer	rice Class
J. Tat Had	doop and Streaming Data". McGraw Hill	
10. Tre	vor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Spr	inger
11. Ma	rk Gardner, "Beginning R: The Statistical Programming Language", Wrox Publication	-
12. Pet	e Warden, Big Data Glossary, O'Reilly	
13. Gle	nn J. Myatt, Making Sense of Data, John Wiley & Sons	
14. Pet	e Warden, Big Data Glossary, O'Reilly.	
15. Pet	er Buhlmann, Petros Drineas, Michael Kane, Mark van der Laan, "Handbook of Big	
Dat 16 Lier	a, UKU PIESS vei Han Micheline Kamber "Data Mining Concents and Techniquee" Second	
10. Jia) Fdi	tion Elsevier	
Lui		

	Web Designing				
	Course Outcome (CO)	Bloom's Knowledge Lev	vel (KL)		
At the end	of course , the student will be able to:				
CO 1	CO 1 Understand principle of Web page design and about types of websites				
CO 2	CO 2 Visualize and Recognize the basic concept of HTML and application in web designing.				
CO 3	Recognize and apply the elements of Creating Style Sheet (CSS).		K ₂ , K ₄		
CO 4	Understand the basic concept of Java Script and its application.		K_2, K_3		
CO 5	Introduce basics concept of Web Hosting and apply the concept of	f SEO	K_2, K_3		

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	2	2	1	1	1	1	1	1	2	3	3
CO2	2	1	2	1	1	1	1	1	1	1	2	2	3	3
CO3	3	1	3	2	2	1	1	1	1	1	2	1	3	3
CO4	3	1	3	1	1	1	1	1	1	1	1	2	3	3
CO5	3	1	3	1	2	1	1	1	1	1	1	1	3	3

3-0-0

Unit	Торіс	Proposed Lecture
I	 Introduction : Basic principles involved in developing a web site, Planning process, Domains and Hosting, Responsive Web Designing, Types of Websites (Static and Dynamic Websites), Web Standards and W3C recommendations, Introduction to HTML: What is HTML, HTML Documents, Basic structure of an HTML document, Creating an HTML document, Mark up Tags, Heading-Paragraphs, Line Breaks 	08
II	Elements of HTML: HTML Tags., Working with Text, Working with Lists, Tables and Frames, Working with Hyperlinks, Images and Multimedia, Working with Forms and controls	08

Ш	Concept of CSS: Creating Style Sheet, CSS Properties, CSS Styling(Background, Text Format, Controlling Fonts), Working with block elements and objects, Working with Lists and Tables, CSS Id and Class, Box Model(Introduction, Border properties, Padding Properties, Margin properties) CSS Advanced(Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector), CSS Color, Creating page Layout and Site Designs.	08
IV	Introduction to Client Side Scripting, Introduction to Java Script, Javascript Types, Variables in JS, Operators in JS, Conditions Statements, Java Script Loops, JS Popup Boxes, JS Events, JS Arrays, Working with Arrays, JS Objects, JS Functions, Using Java Script in Real time, Validation of Forms, Related Examples	08
V	 Web Hosting: Web Hosting Basics, Types of Hosting Packages, Registering domains, Defining Name Servers, Using Control Panel, Creating Emails in Cpanel, Using FTP Client, Maintaining a Website Concepts of SEO: Basics of SEO, Importance of SEO, Onpage Optimization Basics 	08
Text B 1.	Sooks: Steven M. Schafer, "HTML, XHTML, and CSS Bible, 5ed", Wiley India	

2. Ian Pouncey, Richard York, "Beginning CSS: Cascading Style Sheets for Web Design", Wiley India

	Computer Graphics									
	Course Outcome (CO)	Bloom's Knowledge Level (KL)								
At the end	of course , the student will be able to:									
CO 1	Understand the graphics hardware used in field of computer graphics.									
CO 2	Understand the concept of graphics primitives such as lines and circle algorithms.	based on different								
CO 3	Apply the 2D graphics transformations, composite transformation and	Clipping concepts.								
CO 4	Apply the concepts of and techniques used in 3D computer graphics, in transformations.	ncluding viewing								
CO 5	Perform the concept of projections, curve and hidden surfaces in real li	fe.								

Course	Programme Outcome (PO)										PSO	PSO		
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	2	3	3	3	2						1	2	2	2
CO-2	3	3	3	3	3						1	2	2	3
CO-3	3	2	3	3	3						1	2	2	3
CO-4	3	3	2	3	2					2	1	2	2	3
CO-5	3	3	3	3	3					2	1	2	2	2
PO Target	2.8	2.8	2.8	3	2.6	0	0	0	0	2	1	2	2	2.6

Unit Topic Proposed Lecture I Introduction and Line Generation: Types of computer graphics, Graphic Displays- Random scan displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Mid-point circle generating algorithm, and parallel version of these algorithms. 08 II Transformations: Basic transformation, Matrix representations and homogenous coordinates, Composite transformations, Reflections and shearing. 08 Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms. Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping gainst non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping 08 III Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-D Transformation, 3D viewing, projections, 3-D Clipping. 08 V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models- Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. 08 1 Donald Hearn and M Pauline Baker, "Computer Graphics Pinciple", Pearson Education 08 2. Foley, Vandam, Feiner, Hughes – "Computer Graphics", McGraw Hill 08 <td< th=""><th></th><th>DETAILED SYLLABUS</th><th></th></td<>		DETAILED SYLLABUS	
Introduction and Line Generation: Types of computer graphics, Graphic Displays. Random scan displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Mid-point circle generating algorithm, and parallel version of these algorithms. 08 II Transformations: Basic transformation, Matrix representations and homogenous coordinates, Composite transformations, Reflections and shearing. 08 Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms-Line clipping algorithm such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping. Weiler and Atherton polygon clipping, Curve clipping, Text clipping 08 III Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-D Transformation, 3D viewing, projections, 3-D Clipping. 08 V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Sean line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. 08 II Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education. 08 . Rogers, " Procedural Elements of Computer Graphics Principle", Pearson Education. 08 . Nonald Hearn and M Pauline Baker, "Computer Graphics", McGraw Hilll 48	Unit	Topic	Proposed Lecture
II Transformations: Basic transformation, Matrix representations and homogenous coordinates, Composite transformations, Reflections and shearing. 08 Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms-Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping 08 III Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-D Transformation, 3D viewing, projections, 3-D Clipping. 08 IV Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Baspline and Bezier curves and surfaces. 08 V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. 08 Text books: 1. Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education 2. Rogers, " Procedural Elements of Computer Graphics", McGraw Hill 4. W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. 5. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Graphic "Wile	Ι	Introduction and Line Generation: Types of computer graphics, Graphic Displays- Random scan displays, Raster scan displays, Frame buffer and video controller, Points and lines, Line drawing algorithms, Circle generating algorithms, Mid-point circle generating algorithm, and parallel version of these algorithms.	08
Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms- Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping III Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-D Transformation, 3D viewing, projections, 3-D Clipping. 08 IV Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces. 08 V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. 08 Text books: 1. Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education 2. Foley, Vandam, Feiner, Hughes – "Computer Graphics C Version", Pearson Education. 3. Rogers, " Procedural Elements of Computer Graphics", McGraw Hill 4. W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. 5. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill 6. R.K. Maurya, "Computer Graphic " Wiley Dreamtech Publication. 7. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited.	II	Transformations: Basic transformation, Matrix representations and homogenous coordinates, Composite transformations, Reflections and shearing.	08
III Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-D Transformation, 3D viewing, projections, 3-D Clipping. 08 IV Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces. 08 V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. Text books: 1. Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education 3. Rogers, "Procedural Elements of Computer Graphics Principle", Pearson Education. 3. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill 4. W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. 5. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Graphics", McGraw Hill. 7. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited. 8. 8. Donald Hearn and M Pauline Baker, "Computer Graphics", McGraw Hill. 6.		Windowing and Clipping: Viewing pipeline, Viewing transformations, 2-D Clipping algorithms- Line clipping algorithms such as Cohen Sutherland line clipping algorithm, Liang Barsky algorithm, Line clipping against non rectangular clip windows; Polygon clipping – Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping, Curve clipping, Text clipping	
IV Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces. 08 V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. 08 Text books: 1. Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education 2. Foley, Vandam, Feiner, Hughes – "Computer Graphics principle", Pearson Education. 3. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill 4. W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Graphic Wiley Dreamtech Publication. 7. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited. 8. Donald Hearn and M Pauline Baker, "Computer Graphics with Open GL", Pearson education	III	Three Dimensional: 3-D Geometric Primitives, 3-D Object representation, 3-D Transformation, 3D viewing, projections, 3-D Clipping.	08
V Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows. 08 Text books: 1. Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education 2. Foley, Vandam, Feiner, Hughes – "Computer Graphics principle", Pearson Education. 3. Rogers, " Procedural Elements of Computer Graphics", McGraw Hill 4. W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. 5. 5. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Graphics" – McGraw Hill. 7. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited. 8. Donald Hearn and M Pauline Baker, "Computer Graphics with Open GL", Pearson education	IV	Curves and Surfaces: Quadric surfaces, Spheres, Ellipsoid, Blobby objects, Introductory concepts of Spline, Bspline and Bezier curves and surfaces.	08
 Text books: Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education Foley, Vandam, Feiner, Hughes – "Computer Graphics principle", Pearson Education. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Graphic" Wiley Dreamtech Publication. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited. Donald Hearn and M Pauline Baker, "Computer Graphics with Open GL", Pearson education 	V	Hidden Lines and Surfaces: Back Face Detection algorithm, Depth buffer method, A- buffer method, Scan line method, basic illumination models– Ambient light, Diffuse reflection, Specular reflection and Phong model, Combined approach, Warn model, Intensity Attenuation, Color consideration, Transparency and Shadows.	08
 Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education Foley, Vandam, Feiner, Hughes – "Computer Graphics principle", Pearson Education. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Graphic " Wiley Dreamtech Publication. Mukherjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited. Donald Hearn and M Pauline Baker, "Computer Graphics with Open GL", Pearson education 	Text be	ooks:	
	1. 2. 3. 4. 5. " Wiley 7. Muk 8. Dona	Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education Foley, Vandam, Feiner, Hughes – "Computer Graphics principle", Pearson Education. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill W. M. Newman, R. F. Sproull – "Principles of Interactive computer Graphics" – McGraw Hill. Amrendra N Sinha and Arun D Udai," Computer Graphics", McGraw Hill. 6. R.K. Maurya, "Computer Dreamtech Publication. herjee, Fundamentals of Computer graphics & Multimedia, PHI Learning Private Limited. ald Hearn and M Pauline Baker, "Computer Graphics with Open GL", Pearson education	ter Graphic

Object Oriented System Design						
	Course Outcome (CO)	Bloom's Knowledge Level (KL)				
At the end	of course , the student will be able to:					
CO 1	Understand the application development and analyze the insights programming to implement application	of object oriented				
CO 2	Understand, analyze and apply the role of overall modeling conce	epts (i.e. System, structural)				
CO 3	Understand, analyze and apply oops concepts (i.e. abstraction, in	heritance)				
CO 4	Understand the basic concepts of C++ to implement the object or	iented concepts				
CO 5	To understand the object oriented approach to implement real wo	rld problem.				

DETAILED SYLLABUS 3-0-0

Unit	Торіс	Proposed Lecture
Ι	Introduction: The meaning of Object Orientation, object identity, Encapsulation, information hiding, polymorphism, generosity, importance of modelling, principles of modelling, object oriented modelling, Introduction to UML, conceptual model of the UML, Architecture.	08
Ш	 Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Class & Object Diagrams: Terms, concepts, modelling techniques for Class & Object Diagrams. Collaboration Diagrams: Terms, Concepts, depicting a message, polymorphism in collaboration Diagrams, iterated messages, use of self in messages. Sequence Diagrams: Terms, concepts, depicting asynchronous messages with/without priority, call-back mechanism, broadcast messages. Basic Behavioural Modeling: Use cases, Use case Diagrams, Activity Diagrams, State Machine, Process and thread, Event and signals, Time diagram, interaction diagram, Package diagram. Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams. 	08
ш	Object Oriented Analysis: Object oriented design, Object design, Combining three models, Designing algorithms, design optimization, Implementation of control, Adjustment of inheritance, Object representation, Physical packaging, Documenting design considerations. Structured analysis and structured design (SA/SD) , Jackson Structured Development (JSD).Mapping object oriented concepts using non-object oriented language, Translating classes into data structures, Passing arguments to methods, Implementing inheritance, associations encapsulation. Object oriented programming style: reusability, extensibility, robustness, programming in the large. Procedural v/s OOP, Object oriented language features. Abstraction and Encapsulation.	08
IV	 C++ Basics : Overview, Program structure, namespace, identifiers, variables, constants, enum, operators, typecasting, control structures C++ Functions : Simple functions, Call and Return by reference, Inline functions, Macro Vs. Inline functions, Overloading of functions, default arguments, friend functions, virtual functions 	08

V	Objects and Classes : Basics of object and class in C++, Private and public members, static data and function members, constructors and their types, destructors, operator overloading, type conversion. Inheritance : Concept of Inheritance, types of inheritance: single, multiple, multilevel, hierarchical, hybrid, protected members, overriding, virtual base class Polymorphism : Pointers in C++, Pointes and Objects, this pointer, virtual and pure virtual functions, Implementing polymorphism	08
Text I	Books	
1.	James Rumbaugh et. al, "Object Oriented Modeling and Design", Pearson Education	
2.	Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Pear	son
E	ducation 3. Object Oriented Programming With C++, E Balagurusamy, McGraw Hill.	
4.	C++ Programming, Black Book, Steven Holzner, dreamtech	

- 5. Object Oriented Programming in Turbo C++, Robert Lafore, Galgotia
- 6. Object Oriented Programming with ANSI and Turbo C++, Ashok Kamthane, Pearson
- 7. The Compete Reference C++, Herbert Schlitz, McGraw Hill.

				Mac	hine Lea	rning Te	chnique	s				
		Cou	rse Out	come (C	0)				Bloom's	Knowled	lge Level	(KL)
At the end	d of course , th	e studen	t will be	able:								
CO 1	To understan	d the nee	d for ma	chine lea	rning for	various j	problem	solving				
CO 2	To understand from data	To understand a wide variety of learning algorithms and how to evaluate models generated from data										
CO 3	To understand the latest trends in machine learning											
CO 4	To design appropriate machine learning algorithms and apply the algorithms to a real- world problems											
CO 5	To optimize by applying	the mode the mode	ls learne ls	d and rep	oort on th	e expecte	ed accura	cy that ca	an be achi	ieved		
CO\PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	2	2	3	2	3	2	3	2
CO2	2	1	1	3	1	1	2	1	2	2	2	3
CO3	2	3	3	1	2	2	1	2	1	1	3	3
CO4	2	2	3	1	2	1	1	2	2	2	2	3
CO5	2	1	2	3	1	1	1	2	1	2	3	2

ILED	D	I	ы
3-(0-0	0	

Unit	Торіс	Proposed
		Lecture
Ι	INTRODUCTION – Learning, Types of Learning, Well defined learning problems,	08
	Designing a Learning System, History of ML, Introduction of Machine Learning Approaches	
	- (Artificial Neural Network, Clustering, Reinforcement Learning, Decision Tree Learning,	
	Bayesian networks, Support Vector Machine, Genetic Algorithm), Issues in Machine	
	Learning and Data Science Vs Machine Learning;	
II	REGRESSION: Linear Regression and Logistic Regression	08
	BAYESIAN LEARNING - Bayes theorem, Concept learning, Bayes Optimal Classifier,	
	Naïve Bayes classifier, Bayesian belief networks, EM algorithm.	
	SUPPORT VECTOR MACHINE: Introduction, Types of support vector kernel – (Linear	
	kernel, polynomial kernel, and Gaussiankernel), Hyperplane – (Decision surface), Properties	
	of SVM, and Issues in SVM.	
III	DECISION TREE LEARNING - Decision tree learning algorithm, Inductive bias,	08
	Inductive inference with decision trees, Entropy and information theory, Information gain,	
	ID-3 Algorithm, Issues in Decision tree learning.	
	INSTANCE-BASED LEARNING – k-Nearest Neighbour Learning, Locally Weighted	
	Regression, Radial basis function networks, Case-based learning.	

IV	ARTIFICIAL NEURAL NETWORKS – Perceptron's, Multilayer perceptron, Gradient descent and the Delta rule, Multilayer networks, Derivation of Backpropagation Algorithm, Generalization, Unsupervised Learning – SOM Algorithm and its variant; DEEP LEARNING - Introduction, concept of convolutional neural network, Types of layers – (Convolutional Layers, Activation function, pooling, fully connected), Concept of Convolution (1D and 2D) layers, Training of network, Case study of CNN for eg on Diabetic Retinopathy, Building a smart speaker, Self-deriving car etc.	08
V	REINFORCEMENT LEARNING –Introduction to Reinforcement Learning , Learning Task,Example of Reinforcement Learning in Practice, Learning Models for Reinforcement – (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning,Introduction to Deep Q Learning. GENETIC ALGORITHMS: Introduction, Components, GA cycle of reproduction, Crossover, Mutation, Genetic Programming, Models of Evolution and Learning, Applications.	08
Text b	ooks:	
	1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited	d, 2013.
	2. Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Mac The MIT Press 2004.	hine Learning),

3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.

4. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag.

	Application of Soft Computing		
	Course Outcome (CO)	Bloom's Knowledge Leve	l (KL)
At the end	of course , the student will be able to :		
CO 1	Recognize the feasibility of applying a soft computing methodolog	y for a particular problem	
CO 2	Understand the concepts and techniques of soft computing and fost and implementing soft computing based solutions for real-world and	er their abilities in designing nd engineering problems.	
CO 3	Apply neural networks to pattern classification and regression solutions by various soft computing approaches for a given problem	problems and compare n.	
CO 4	Apply fuzzy logic and reasoning to handle uncertainty and solve er	ngineering problems	
CO 5	Apply genetic algorithms to combinatorial optimization problems		

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	2	2	1	1		1	3	3	
CO2	3	3	3	3	3	2	2		1		1	3	3	
CO3	3	3	3	3	3	2	2		1		1	2	3	
CO4	3	3	3	3	3	2	2		1		1	1	3	
CO5	3	3	3	3	3	2	2		1		1	1	3	

		3-0-0
Unit	Торіс	Propose
		d
		Lecture
Ι	Neural Networks-I (Introduction & Architecture) : Neuron, Nerve structure and synapse,	08
	Artificial Neuron and its model, activation functions, Neural network architecture: single layer and	
	multilayer feed forward networks, recurrent networks. Various learning techniques; perception and	
	convergence rule, Auto-associative and hetro-associative memory.	
II	Neural Networks-II (Back propagation networks): Architecture: perceptron model, solution,	08
	single layer artificial neural network, multilayer perception model; back propagation learning	
	methods, effect of learning rule co-efficient ;back propagation algorithm, factors affecting	
	backpropagation training, applications.	
III	Fuzzy Logic-I (Introduction): Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set	08
	theory and operations, Properties of fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp	
	conversion.	
IV	Fuzzy Logic –II (Fuzzy Membership, Rules) : Membership functions, interference in fuzzy logic,	08
	fuzzy if-then rules, Fuzzy implications and Fuzzy algorithms, Fuzzyfications & Defuzzificataions,	
	Fuzzy Controller, Industrial applications	

enetic representations, (encoding) Initialization and selection, Genetic operators, Mutation, enerational Cycle, applications. : karan & G.A. Vijayalakshmi Pai, "Neural Networks,Fuzzy Logic and Genetic Algorithm:Synthesis and ions" Prentice Hall of India.	1
enerational Cycle, applications. : karan & G.A. Vijayalakshmi Pai, "Neural Networks,Fuzzy Logic and Genetic Algorithm:Synthesis and ions" Prentice Hall of India.	1
: karan & G.A. Vijayalakshmi Pai, "Neural Networks,Fuzzy Logic and Genetic Algorithm:Synthesis and ions" Prentice Hall of India.	1
karan & G.A. Vijayalakshmi Pai, "Neural Networks,Fuzzy Logic and Genetic Algorithm:Synthesis and ions" Prentice Hall of India.	1
ions" Prentice Hall of India.	
dhy, "Artificial Intelligence and Intelligent Systems" Oxford University Press. Reference Books:	
aykin, "Neural Netowrks", Pearson Education	
J. Ross, "Fuzzy Logic with Engineering Applications" Wiley India.	
atish, "Neural Networks" McGraw Hill	
	lhy, "Artificial Intelligence and Intelligent Systems" Oxford University Press. Reference Books: aykin, "Neural Netowrks", Pearson Education J. Ross, "Fuzzy Logic with Engineering Applications" Wiley India. atish, "Neural Networks" McGraw Hill

	Augmented & virtual Keality				
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)			
t the	end of course , the student will be able :				
CO 1	To make students know the basic concept and understand the framework of virtual reality.				
CO 2	To understand principles and multidisciplinary features of virtual reality and apply it in developing applications.				
CO 3	To know the technology for multimodal user interaction and perception VR, in particular the visual, audial and haptic interface and behavior.				
CO 4 To understand and apply technology for managing large scale VR environment in real time.					
CO 5	To understand an introduction to the AR system framework and apply AR tools in software development.				
	DETAILED SYLLABUS	3-0-0			
Unit	Торіс				
I	VIRTUAL REALITY AND VIRTUAL ENVIRONMENTS: The historical development of VR: Scientific landmarks Computer Graphics, Real-time computer graphics, Flight simulation, Virtual environments, Requirements for VR, benefits of Virtual reality. HARDWARE TECHNOLOGIES FOR 3D USER INTERFACES: Visual Displays Auditory Displays Hantic Displays Choosing Output Devices for 3D User Interfaces	08			
II	3D USER INTERFACE INPUT HARDWARE: Input device characteristics, Desktop input devices, Tracking Devices, 3D Mice, Special Purpose Input Devices, Direct Human Input, Home - Brewed Input Devices, Choosing Input Devices for 3D Interfaces.	08			
III	SOFTWARE TECHNOLOGIES: Database - World Space, World Coordinate, World Environment, Objects - Geometry, Position / Orientation, Hierarchy, Bounding Volume, Scripts and other attributes, VR Environment - VR Database, Tessellated Data, LODs, Cullers and Occluders, Lights and Cameras, Scripts, Interaction - Simple, Feedback, Graphical User Interface, Control Panel, 2D Controls, Hardware Controls, Room / Stage / Area Descriptions, World Authoring and Playback, VR toolkits, Available software in the market	08			

 IV 3D INTERACTION TECHNIQUES: 3D Manipulation tasks, Manipulation Techniques a Input Devices, Interaction Techniques for 3D Manipulation, Deign Guidelines - 3D Travel Tasl Travel Techniques, Design Guidelines - Theoretical Foundations of Wayfinding, User Center Wayfinding Support, Environment Centered Wayfinding Support, Evaluating Wayfinding Aid Design Guidelines - System Control, Classification, Graphical Menus, Voice Command Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Ca Study: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry. DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality. Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdca, Grigor C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003.			
 Input Devices, Interaction Techniques for 3D Manipulation, Deign Guidelines - 3D Travel Task Travel Techniques, Design Guidelines - Theoretical Foundations of Wayfinding Wayfinding Aix Design Guidelines - System Control, Classification, Graphical Menus, Voice Command Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Ca Study: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry . DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: 1. Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 195. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Societ	7	3D INTERACTION TECHNIQUES: 3D Manipulation tasks, Manipulation Techniques and	08
 Travel Techniques, Design Guidelines - Theoretical Foundations of Wayfinding, User Center Wayfinding Support, Evaluating Wayfinding Ait Design Guidelines - System Control (Classification, Graphical Menus, Voice Commann Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Ca Study: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry. DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines, Beyond Text and Number entry. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrey, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meing Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Conflet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolution]	Input Devices, Interaction Techniques for 3D Manipulation, Deign Guidelines - 3D Travel Tasks,	
 Wayfinding Support, Environment Centered Wayfinding Support, Evaluating Wayfinding Aid Design Guidelines - System Control, Classification, Graphical Menus, Voice Command Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Castudy: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry. DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Dong A Bowman, Emest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology", Wiley Interscience India, 2003.	,	Travel Techniques, Design Guidelines - Theoretical Foundations of Wayfinding, User Centered	
 Design Guidelines - System Control, Classification, Graphical Menus, Voice Command, Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Ca Study: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry. DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented reality difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore Coffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002	1	Wayfinding Support, Environment Centered Wayfinding Support, Evaluating Wayfinding Aids,	
 Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Ca Study: Mixing System Control Methods, Symbolic Input Tasks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry. DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: 1. Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. 2. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. 3. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. 4. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. 5. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. 6. John Vince, "Virtual Reality: The Revolutionary Technology" and how it Promises to Transform Society", Simc 1991. 8. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 9. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.]	Design Guidelines - System Control, Classification, Graphical Menus, Voice Commands,	
 Study: Mixing System Control Methods, Symbolic Input Tarks, symbolic Input Technique Design Guidelines, Beyond Text and Number entry . DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyn Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doly A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burda, Griagore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 		Gestrual Commands, Tools, Mutimodal System Control Techniques, Design Guidelines, Case	
 Design Guidelines, Beyond Text and Number entry. DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Fext books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 		Study: Mixing System Control Methods Symbolic Input Tasks symbolic Input Techniques	
 Design Guidelines, Dejoind rext and Number entry . DESIGNING AND DEVELOPING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Emest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Sime 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 	1	Design Guidelines Beyond Text and Number entry	
 Destoring AND DEVELOFING 3D USER INTERFACES: Strategies for Designing a Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. John Vince, "Virtual Reality: The Revolutionary Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 	د ۲	DESIGN OUTCOMMENTS, DEVOLUTER AND DEVELOPING 2D LICED INTEDEACES. Stantogics for Designing and	
 Developing Guidelines and Evaluation. VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augmentreality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 		DESIGNING AND DEVELOPTING 5D USER INTERFACES: Strategies for Designing and	
 VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine, Entertainment, Science, Training. Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augmentreality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology", Wiley Interscience, India, 2003. John William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 		Developing Guidelines and Evaluation.	
 Entertainment, Science, Training. V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.	,	VIRTUAL REALITY APPLICATIONS: Engineering, Architecture, Education, Medicine,	
 V Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	J	Entertainment, Science, Training.	
 Augmented and Mixed Reality, Taxonomy, technology and features of augmented reality difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in education augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 		-	
 Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphice)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 			
 Augmented and Mixed Reality, Taxonomy, technology and features of augmented realit difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphice)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 			
 difference between AR and VR, Challenges with AR, AR systems and functionality, Augment reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Fext books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Sime 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	1	Augmented and Mixed Reality, Taxonomy, technology and features of augmented reality,	08
 reality methods, visualization techniques for augmented reality, wireless displays in educatior augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	(difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented	
 augmented reality applications, mobile projection interfaces, marker-less tracking for augment reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	1	reality methods, visualization techniques for augmented reality, wireless displays in educational	
 reality, enhancing interactivity in AR environments, evaluating AR systems. Text books: Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	;	augmented reality applications, mobile projection interfaces, marker-less tracking for augmented	
 Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	1	reality, enhancing interactivity in AR environments, evaluating AR systems.	
 Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 			
 Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality Applications: Foundations ofEffect Morgan Kaufmann, 2009. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	t boo	oks:	
 Anan B Craig, Winnam R Sherman and Schrey B Win, "Developing Virtual Reality Approach", 2005. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	1 Δ	Alan B. Craig, William R. Sherman and Jeffrey D. Will, "Developing Virtual Reality Applications: Foundations of Effective F	Design"
 Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	і. л м	Mar D'Craig, withain R Sherman and Jenrey D' with, "Developing virtual Reality Applications, i oundations of Enective E	, congin
 Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005. Doug A Bowman, Ernest Kuijff, Joseph J LaViola, Jr and Ivan Poupyrev, "3D User Interfaces, Theory and Practice", A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	IV.		
 Boug A Bowman, Effect Rulph, Joseph J La Viola, Jr and Ivan Poupyrev, SD Oser Interfaces, Theory and Practice ', A USA, 2005. Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	2. G	Jerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.	m Weslaw
 Oliver Bimber and Ramesh Raskar, "Spatial Augmented Reality: Meging Real and Virtual Worlds", 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simc 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	э. D 11	Joug A Dowman, Effect Ruijii, Joseph J La viola, Ji and Ivan Poupyrev, SD Oser interfaces, Theory and Practice, Addisc	JII WESIEY,
 Onver Binder and Kanlesh Kaskar, Spatial Augmented Reality: Meging Real and Virtual Worlds , 2005. Burdea, Grigore C and Philippe Coiffet, "Virtual Reality Technology", Wiley Interscience, India, 2003. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	1 0	Jon, 2003. Diver Rimber and Ramesh Raskar, "Spatial Augmented Reality Maxing Real and Virtual Worlds", 2005	
 John Vince, "Virtual Reality Systems", Addison Wesley, 1995. John Vince, "Virtual Reality Systems", Addison Wesley, 1995. Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	4. U 5 P	Surdea Grigore C and Philippe Coiffet "Virtual Reality Technology" Wiley Interscience, India, 2003	
 Found Finley, Findal Reality, Systems , Hadison (Concepts, 1995). Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society", Simo 1991. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	J. D 6 Ги	John Vince, "Virtual Reality Systems" Addison Wesley 1995	
 1991. 8. William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgar in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 9. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	7. H	Howard Rheingold, "Virtual Reality: The Revolutionary Technology and how it Promises to Transform Society". Simon and	d Schuster.
 William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The Morgan in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002 Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013. 	10	1991.	,
in Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 20029. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.	8. W	William R Sherman and Alan B Craig, "Understanding Virtual Reality: Interface, Application and Design (The MorganKau	fmann Series
9. Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.	in	n Computer Graphics)". Morgan Kaufmann Publishers, San Francisco, CA, 2002	
	9. A	Alan B. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.	

	Human Computer Interface							
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)						
At the	end of course , the student will be able to							
CO 1	Understand and analyze the common methods in the user-centered design process and the appropriateness of individual methods for a given problem.							
CO 2	Apply, adapt and extend classic design standards, guidelines, and patterns.							
CO 3	Employ selected design methods and evaluation methods at a basic level of competence.							
CO 4	Build prototypes at varying levels of fidelity, from paper prototypes to functional, interactive prototypes.							
CO 5	Demonstrate sufficient theory of human computer interaction, experimental methodology and inferential statistics to engage with the contemporary research literature in interface technology and design.							
DETAILED SYLLABUS								
Unit Topic								
Ι	Introduction: Importance of user Interface – definition, importance of 8 good design. Benefits of good design. A brief history of Screen design. The graphical user interface – popularity of graphics, the concept of direct manipulation, graphical system, Characteristics, Web user – Interface popularity, characteristics- Principles of user interface	08						
II	Design process: Human interaction with computers, importance of 8 human characteristics human consideration, Human interaction speeds, understanding business junctions. III Screen Designing : Design goals – Scre	08						
Ш	Screen Designing : Design goals – Screen planning and purpose, 8 organizing screen elements, ordering of screen data and content – screen navigation and flow – Visually pleasing composition – amount of information – focus and emphasis – presentation information simply and meaningfully – information retrieval on web – statistical graphics – Technological consideration in interface design.	08						
IV	Windows : New and Navigation schemes selection of window, 8 selection of devices based and screen based controls. Components – text and messages, Icons and increases – Multimedia, colors, uses problems, choosing colors	08						
V	Software tools : Specification methods, interface – Building Tools. 8 Interaction Devices – Keyboard and function keys – pointing devices – speech recognition digitization and generation – image and video displays – drivers.	08						

Text books:

- 1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale Human Computer Interaction, 3rd Edition Prentice Hall, 2004.
- 2. Jonathan Lazar Jinjuan Heidi Feng, Harry Hochheiser, Research Methods in HumanComputer Interaction, Wiley, 2010.
- 3. Ben Shneiderman and Catherine Plaisant Designing the User Interface: Strategies for Effective Human-Computer Interaction (5th Edition, pp. 672, ISBN 0- 321-53735-1, March 2009), Reading, MA: Addison-Wesley Publishing Co.

Database Management Systems Lab

	Course Outcome (CO) Bloom's Knowledge										
At the end of course , the student will be able to:											
CO 1	Understand and apply oracle 11 g products for creating tables, v other database objects.	iews, indexes, sequences and									
CO 2	Design and implement a database schema for company data bas information system, payroll processing system, student information	se, banking data base, library on system.									
CO 3	Write and execute simple and complex queries using DDL, DML,	, DCL and TCL									
CO 4	Write and execute PL/SQL blocks, procedure functions, packages	and triggers, cursors.									
CO 5	Enforce entity integrity, referential integrity, key constraints, and database.	domain constraints on									

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	2	2	1	1	2	1	2	2	3	3
CO2	3	3	2	2	3	1	2	1	2	2	3	3	3	3
CO3	3	2	2	2	2	2	1	1	2	1	2	2	3	3
CO4	2	2	3	2	2	2	2	1	2	2	3	2	3	3
CO5	3	3	2	2	3	1	1	1	2	1	2	3	3	3

- 1. Installing oracle/ MYSQL
- 2. Creating Entity-Relationship Diagram using case tools.
- 3. Writing SQL statements Using ORACLE /MYSQL:
 - a)Writing basic SQL SELECT statements.
 - b) Restricting and sorting data.
 - c)Displaying data from multiple tables.
 - d)Aggregating data using group function.
 - e)Manipulating data.
 - e)Creating and managing tables.
- 4. Normalization
- 5. Creating cursor
- 6. Creating procedure and functions
- 7. Creating packages and triggers
- 8. Design and implementation of payroll processing system
- 9. Design and implementation of Library Information System
- 10. Design and implementation of Student Information System
- 11. Automatic Backup of Files and Recovery of Files
- 12. Mini project (Design & Development of Data and Application) for following :
 - a) Inventory Control System.
 - b) Material Requirement Processing.
 - c) Hospital Management System.
 - d) Railway Reservation System.
 - e) Personal Information System.
 - f) Web Based User Identification System.
 - g) Timetable Management System.
 - h) Hotel Management System

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner

It is also suggested that open source tools should be preferred to conduct the lab (MySQL, SQL server, Oracle, MongoDB, Cubrid, MariaDBetc)

	Database Management Systems Lab: Mapping with Virtual Lab
Name of the Lab	Name of the Experiment
	Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table)
	Data Manipulation Language(DML) Statements
Database Management Lab	Data Query Language(DQL) Statements: (Select statement with operations like Where clause, Order by, Logical operators, Scalar functions and Aggregate functions)
	Transaction Control Language(TCL) statements: (Commit(make changes permanent), Rollback (undo)
	Describe statement: To view the structure of the table created

COMPILER DESIGN LAB										
	Course Outcome (CO)Bloom's Knowledge Leve									
At the end	of course , the student will be able to:									
CO 1	CO 1 Identify patterns, tokens & regular expressions for lexical analysis.									
CO 2	Design Lexical analyser for given language using C and LEX	X /YACC tools								
CO 3	Design and analyze top down and bottom up parsers.									
CO 4	Generate the intermediate code									
CO 5	Generate machine code from the intermediate code forms									

<u>CO-PO Mapping (Compiler Design Lab</u>

Course Code:	Programme Outcome (PO)												PSO/ APO	PSO/ APO
KCS-552	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	-	-	-	2	-	-	-	-	-	-	2	2	-
C02	2	-	3	2	3	-	-	-	-	3	2	-	-	3
CO3	3	-	-	-	3	-	-	-	-	-	-	-	-	-
CO4	2	3	-	3	-	-	-	-	-	-	-	-	-	2
C05	2	3	-	3	-	-	-	-	-	-	-	-	-	2
PO Target	2.4	3	3	2.6	2.6	0	0	0	0	3	2	2	2	2.3

DETAILED SYLLABUS 1. Design and implement a lexical analyzer for given language using C and the lexical analyzer should ignore redundant spaces, tabs and new lines.

- 2. Implementation of Lexical Analyzer using Lex Tool
- 3. Generate YACC specification for a few syntactic categories.
 - a) Program to recognize a valid arithmetic expression that uses operator +, -, * and /.
 - b) Program to recognize a valid variable which starts with a letter followed by any number of letters or digits. c) Implementation of Calculator using LEX and YACC

d) Convert the BNF rules into YACC form and write code to generate abstract syntax tree

- 4. Write program to find ε closure of all states of any given NFA with ε transition.
- 5. Write program to convert NFA with ε transition to NFA without ε transition.
- 6. Write program to convert NFA to DFA
- 7. Write program to minimize any given DFA.
- 8. Develop an operator precedence parser for a given language.
- 9. Write program to find Simulate First and Follow of any given grammar.
- 10. Construct a recursive descent parser for an expression.
- 11. Construct a Shift Reduce Parser for a given language.
- 12. Write a program to perform loop unrolling.
- 13. Write a program to perform constant propagation.
- 14. Implement Intermediate code generation for simple expressions.
- 15. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions that can be assembled and run using an 8086 assembler. The target assembly instructions can be simple move, add, sub, jump etc.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (C, C++, Lex or Flex and YACC tools (Unix/Linux utilities)etc)

Design an	d Analysis of Algorithm Lab
Course Out	tcome (CO) Bloom's
	Knowledge
	Level (KL)
At the end of course , the student will be able to	0:
CO 1	Implement algorithm to solve problems by
	iterative approach.
CO 2	Implement algorithm to solve problems by divide
	and conquer approach
CO 3	Implement algorithm to solve problems by
	Greedy algorithm approach.
	Implement algorithm to solve problems by
CO 4	Dynamic programming, backtracking, branch and
	bound approach.
CO 5	Implement algorithm to solve problems by branch
	and bound approach.

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	1				1	3	3	3
CO2	3	3	3	3	2	1	1				1	3	2	3
CO3	3	3	2	2	3	1	1				1	2	2	2
CO4	3	3	3	3	3	1	1				1	2	3	2
CO5	3	3	3	3	3	1	1				1	3	2	2

Detailed Syllebus

- 1. Program for Recursive Binary & Linear Search.
- 2. Program for Heap Sort.
- 3. Program for Merge Sort.
- 4. Program for Selection Sort.
- 5. Program for Insertion Sort.
- 6. Program for Quick Sort.
- 7. Knapsack Problem using Greedy Solution
- 8. Perform Travelling Salesman Problem
- 9. Find Minimum Spanning Tree using Kruskal's Algorithm
- 10. Implement N Queen Problem using Backtracking

11. Sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of n > 5000 and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide and- conquer method works along with its time complexity analysis: worst case, average case and best case.

12. Sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of n > 5000, and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate how the divide and- conquer method works along with its time complexity analysis: worst case, average case and best case. 13.6. Implement , the 0/1 Knapsack problem

using (a) Dynamic Programming method (b)

Greedy method.

14. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.

15. Find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's algorithm. Use Union-Find algorithms in your program.

- 16. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 17. Write programs to (a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm.

(b) Implement Travelling Sales Person problem using Dynamic programming.

18. Design and implement to find a subset of a given set $S = {S1, S2,...,Sn}$ of n positive integers whose SUM is

equal to a given positive integer d. For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9, there are two solutions $\{1,2,6\}$ and $\{1,8\}$. Display a suitable message, if the given problem instance doesn't have a solution.

19. Design and implement to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using backtracking principle.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (C, C++ etc)

B.TECH. (CSE & CS) SIXTH SEMESTER (DETAILED SYLLABUS)

							,	<u>,</u>	0						
			Cours	se Outc	ome (C	C O)				Bloor	n's Kno	owledge	Level	(KL)	
				At t	he end	of cour	se, the	studen	t will b	e able t	0				
CO 1	Explain various software characteristics and analyze different software Development Models.														
CO 2	Demonstrate the contents of a SRS and apply basic software quality assurance practices to ensure that design, development meet or exceed applicable standards.														
CO 3	Compa	are and	l contra	ast vari	ous me	thods t	for soft	ware d	esign						
CO 4	Formu unit te	late te sting, '	sting st Test dr	trategy iven de	for sof velopr	tware snent an	systems id funct	s, emple tional t	oy tech esting.	niques	such a	S			
CO 5	Manag and ma mainte	ge soft ake us enance	ware do e of Va and ar	evelopr trious s nalysis.	nent pr oftwar	rocess i e mana	indeper gemen	dently t tools	as wel for dev	l as in elopm	teams ent,				
CO \]	PO														
Марр	ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	3	3	2	3	2	2	1	1		1	3	3	3
CO	2	3	3	3	3	3	2	2		1		1	3	3	3
CO.	3	3	3	3	3	3	2	2	ļ	1		1	2	3	3
CO4	4	3	3	3	3	3	2	2		1		1	1	3	3
CO	5	3	3	3	3	3	2	2		1		1	1	3	3

	DETAILED SYLLABUS	3-1-0						
Unit	Тор	ic	Proposed Lecture					
I	Introduction: Introduction to Software Software Characteristics, Software Cri Similarity and Differences from Conventional Engineering Processes, So Development Life Cycle (SDLC) Models Spiral Model, Evolutionary Development M	e Engineering, Software Components, sis, Software Engineering Processes, oftware Quality Attributes. Software : Water Fall Model, Prototype Model, Iodels, Iterative Enhancement Models.	08					
п	Software Requirement Specifications (SR Elicitation, Analysis, Documentation, Review and M Study, Information Modelling, Data Flow I Decision Tables, SRS Document, IEEE Assurance (SQA): Verification and Vali Frameworks, ISO 9000 Models, SEI-CMM	S): Requirement Engineering Process: lanagement of User Needs, Feasibility Diagrams, Entity Relationship Diagrams, Standards for SRS. Software Quality dation, SQA Plans, Software Quality Model.	08					
ш	Software Design: Basic Concept of Softwa Level Design: Modularization, Design Structure Charts, Ps Cohesion Measures, Design Strategies: Fun Design, Top-Down and Bottom-Up Desig Various Size Oriented Measures: Halestead	re Design, Architectural Design, Low seudo Codes, Flow Charts, Coupling and action Oriented Design, Object Oriented n. Software Measurement and Metrics: 's Software Science, Function Point (FP)	08					

	Based Measures, Cyclomatic Complexity Measures: Control Flow Graphs.		
IV	Software Testing: Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression Testing, Testing for Functionality and Testing for Performance, TopDown and BottomUp Testing Strategies: Test Drivers and Test Stubs, Structural Testing (White Box Testing), Functional Testing (Black Box Testing), Test Data Suit Preparation, Alpha and Beta Testing of Products. Static Testing Strategies: Formal Technical Reviews (Peer Reviews), Walk Through, Code Inspection, Compliance with Design and Coding Standards.	08	
V	Software Maintenance and Software Project Management: Software as an Evolutionary Entity, Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re- Engineering, Reverse Engineering. Software Configuration Management Activities, Change Control Process, Software Version Control, An Overview of CASE Tools. Estimation of Various Parameters such as Cost, Efforts,	08	
	Schedule/Duration, Constructive Cost Models (COCOMO), Resource Allocation Mod Risk Analysis and Management.	dels, Softwa	re
Text b	ooks: 1.RS Pressman, Software Engineering: A Practitioners Approach, McGraw Hill.		
	2. Pankaj Jalote, Software Engineering, Wiley		
	3. Rajib Mall, Fundamentals of Software Engineering, PHI Publication.		
	4. KK Aggarwal and Yogesh Singh, Software Engineering, New Age International Pu	blishers.	
	5. Ghezzi, M. Jarayeri, D. Manodrioli, Fundamentals of Software Engineering, PHI Pu	ublication.	
	6. Ian Sommerville, Software Engineering, Addison Wesley.		
	/. Kassem Saleh, "Software Engineering", Cengage Learning.		

8. P fleeger, Software Engineering, Macmillan Publication

						Wol	h Tooh	nology							
		Cou	urse O	utcome	e (CO)	vv ei	0 Iech	noiogy		Bl	oom's	Knowl	edge L	evel (K	L)
			A	t the e	nd of c	ourse ,	the stu	ıdent v	vill be a	ble to			0		,
CO 1	Explain	n web dev	elopme	ent Stra	tegies a	and Pro	otocols	govern	ing We	b.					
CO 2	Develo	p Java pr	ograms	for with	ndow/w	veb-bas	sed app	licatior	ıs.						
CO 3	Design	web page	es using	g HTM	L, XM	L, CSS	and Ja	vaScrip	ot.						
CO 4	Creatio	on of clien	t-serve	r enviro	onment	using	socket	program	nming						
CO 5	Building enterprise level applications and manipulate web databases using JDBC														
CO6	Design	interactiv	ve web	applica	tions u	sing Se	ervlets a	and JSF)						
CO \ PO M	apping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01		2	1	2	2	2	1	1	1	1	1	1	2	3	3
CO2		2	1	2	1	1	1	1	1	1	1	2	2	3	3
CO3		3	1	3	2	2	1	1	1	1	1	2	1	3	3
CO4		3	1	3	1	1	1	1	1	1	1	1	2	3	3
CO5		3	1	3	1	2	1	1	1	1	1	1	1	3	3

	DETAILED SVLLABUS	3-0-0
Unit	Topic	Proposed Lecture
Ι	Introduction: Introduction and Web Development Strategies, History of Web and Internet, Protocols Governing Web, Writing Web Projects, Connecting to Internet, Introduction to Internet services and tools, Introduction to client-server computing. Core Java: Introduction, Operator, Data type, Variable, Arrays, Methods & Classes, Inheritance, Package and Interface, Exception Handling, Multithread programming, I/O, Java Applet, String handling, Event handling, Introduction to AWT, AWT controls, Layout managers	08
II	Web Page Designing: HTML: List, Table, Images, Frames, forms, CSS, Document type definition, XML: DTD, XML schemes, Object Models, presenting and using XML, Using XML Processors: DOM and SAX, Dynamic HTML	08
III	Scripting: Java script: Introduction, documents, forms, statements, functions, objects; introduction to AJAX, Networking : Internet Addressing, InetAddress, Factory Methods, Instance Methods, TCP/IP Client Sockets, URL, URL Connection, TCP/IP Server Sockets, Datagram.	08
IV	 Enterprise Java Bean: Preparing a Class to be a JavaBeans, Creating a JavaBeans, JavaBeans Properties, Types of beans, Stateful Session bean, Stateless Session bean, Entity bean Java Database Connectivity (JDBC): Merging Data from Multiple Tables: Joining, Manipulating, Databases with JDBC, Prepared Statements, Transaction Processing, Stored Procedures. 	08
V	Servlets: Servlet Overview and Architecture, Interface Servlet and the Servlet Life Cycle, Handling HTTP get Requests, Handling HTTP post Requests, Redirecting Requests to Other Resources, Session Tracking, Cookies, Session Tracking with Http Session Java Server Pages (JSP): Introduction, Java Server Pages Overview, A First Java Server Page	08
	Example, Implicit Objects, Scripting, Standard Actions, Directives, Custom Tag Libraries	
Text	books:	
	irdman, Jessica, "Collaborative Web Development" Addison Wesley	
2. At	an Bayross "HTML DHTML Java Script Perl & CGI" BPB Publication	
3. IV	an Dayloss, "ITTML, DITTML, Java Script, Fort & Cor, Di Di ubication	
5. He	erbert Schieldt, "The Complete Reference: Java", McGraw Hill.	
6. Ha	ans Bergsten, "Java Server Pages", SPD O'Reilly	
7. M	argaret Levine Young, "The Complete Reference Internet", McGraw Hill.	
8. Na	aughton, Schildt, "The Complete Reference JAVA2", McGraw Hill.	
9. Ba	lagurusamy E, "Programming in JAVA", McGraw Hill.	

Computer Network								
	Course Outcome (CO) Bloom's Knowledge Leve							
	At the end of course , the student will be	able to						
CO1	CO1 Explain basic concepts, OSI reference model, services and role of each layer of OSI model and TCP/IP, networks devices and transmission media, Analog and digital data transmission							
CO2	CO2 Apply channel allocation, framing, error and flow control techniques.							
CO3 Describe the functions of Network Layer i.e. Logical addressing, subnetting & Routing Mechanism.								
CO4 Explain the different Transport Layer function i.e. Port addressing, Connection Management, Error control and Flow control mechanism.								
CO5	CO5 Explain the functions offered by session and presentation layer and their Implementation.							
CO6 Explain the different protocols used at application layer i.e. HTTP, SNMP, SMTP, FTP, TELNET and VPN.								

<u>CO-PO Mapping (Computer Networks)</u>

Course Code:	Programme Outcome (PO)													PSO
KC5503	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	2	2	1	2	-	-	-	-	-	1	-	-	-
CO2	3	3	2	1	1	-	-	-	-	-	2	-	-	-
CO3	3	2	3	1	2	-	-	-	-	-	1	-	-	-
CO4	3	3	3	1	2	1	-	-	-	-	3	-	-	-
C05	3	2	3	1	2	2	-	-	-	-	2	-	-	-
PO Target	3	2.4	2.6	1	1.8	1.5	-	-	-	-	1.8	-	-	-

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introductory Concepts : Goals and applications of networks, Categories of networks, Organization of the Internet, ISP, Network structure and architecture (layering principles, services, protocols and standards), The OSI reference model, TCP/IP protocol suite, Network devices and components. Physical Layer: Network topology design, Types of connections, Transmission media, Signal transmission and encoding, Network performance and transmission impairments, Switching techniques and multiplexing.	08
II	Link layer: Framing, Error Detection and Correction, Flow control (Elementary Data Link Protocols, Sliding Window protocols). Medium Access Control and Local Area Networks: Channel allocation, Multiple access protocols, LAN standards, Link layer switches & bridges (learning bridge and spanning tree algorithms).	08
III	Network Layer: Point-to-point networks, Logical addressing, Basic internetworking (IP, CIDR,	
----------	--	----
	ARP, RARP, DHCP, ICMP), Routing, forwarding and delivery, Static and dynamic routing,	08
	Routing algorithms and protocols, Congestion control algorithms, IPv6.	
IV	Transport Layer: Process-to-process delivery, Transport layer protocols (UDP and TCP),	
	Multiplexing, Connection management, Flow control and retransmission, Window management,	08
	TCP Congestion control, Quality of service.	
V	Application Layer: Domain Name System, World Wide Web and Hyper Text Transfer Protocol,	
	Electronic mail, File Transfer Protocol, Remote login, Network management, Data compression,	08
	Cryptography – basic concepts.	
Text be	ooks and References:	
1. Behr	ouz Forouzan, "Data Communication and Networking", McGraw Hill	
2. And	ew Tanenbaum "Computer Networks", Prentice Hall.	
3. Willi	am Stallings, "Data and Computer Communication", Pearson.	
4. Kurc	se and Ross, "Computer Networking- A Top-Down Approach", Pearson.	
5. Peter	son and Davie, "Computer Networks: A Systems Approach", Morgan Kaufmann	
6 W A	Shay "Understanding Communications and Networks" Cengage Learning	
	amor "Computer Networks and Internets" Deerson	

- 7. D. Comer, "Computer Networks and Internets", Pearson.
- 8. Behrouz Forouzan, "TCP/IP Protocol Suite", McGraw Hill.

Big Data												
	Course Outcome (CO) Bloom's Knowledge L	evel (KL)										
	At the end of course , the student will be able to											
CO 1	Demonstrate knowledge of Big Data Analytics concepts and its applications in business.											
CO 2	Demonstrate functions and components of Map Reduce Framework and HDFS.											
CO 3	Discuss Data Management concepts in NoSQL environment.	K ₆										
CO 4	Explain process of developing Map Reduce based distributed processing applications.	K ₂ ,K ₃										
CO 5	Explain process of developing applications using HBASE, Hive, Pig etc.	K ₂ ,K ₅										

CO-PO Mapping (Big Data)

Course					Progra	amme	Outcor	ne (PO)				PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	PSO 1 3 3 3 3 3 3 3 3	2
CO-1	1	-	1	2	3	-	-	-	-	-	-	1	3	1
CO-2	2	3	3	3	3	-	-	-	-	-	-	2	3	2
CO-3	-	3	3	3	3	-	-	-	-	-	-	2	3	2
CO-4	-	1	3	3	3	-	-	-	-	-	-	2	3	2
CO-5	-	1	2	3	3	-	-	-	-	-	-	2	3	2
РО	1.5	2	2.4	2.8	3	-	-	-	-	-	-	1.8	3	1.8

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lectures
Ι	Introduction to Big Data : Types of digital data, history of Big Data innovation, introduction to Big Data platform, drivers for Big Data, Big Data architecture and characteristics, 5 Vs of Big Data, Big Data technology components, Big Data importance and applications, Big Data features – security, compliance, auditing and protection, Big Data privacy and ethics, Big Data Analytics, Challenges of conventional systems, intelligent data analysis, nature of data, analytic processes and tools, analysis vs reporting, modern data analytic tools.	06
Π	 Hadoop: History of Hadoop, Apache Hadoop, the Hadoop Distributed File System, components of Hadoop, data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, Hadoop Echo System. Map Reduce: Map Reduce framework and basics, how Map Reduce works, developing a Map Reduce application, unit tests with MR unit, test data and local tests, anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types, input formats, output formats, Map Reduce features, Real-world Map Reduce 	08
ш	HDFS (Hadoop Distributed File System): Design of HDFS, HDFS concepts, benefits and challenges, file sizes, block sizes and block abstraction in HDFS, data replication, how does HDFS store, read, and write files, Java interfaces to HDFS, command line interface, Hadoop file system interfaces, data flow, data ingest with Flume and Scoop, Hadoop archives, Hadoop I/O: compression, serialization, Avro and file-based data structures. Hadoop Environment: Setting up a Hadoop cluster, cluster specification, cluster setup and installation, Hadoop configuration, security in Hadoop, administering Hadoop, HDFS monitoring & maintenance, Hadoop benchmarks, Hadoop in the cloud	08
IV	 Hadoop Eco System and YARN: Hadoop ecosystem components, schedulers, fair and capacity, Hadoop 2.0 New Features - NameNode high availability, HDFS federation, MRv2, YARN, Running MRv1 in YARN. NoSQL Databases: Introduction to NoSQL MongoDB: Introduction, data types, creating, updating and deleing documents, querying, introduction to indexing, capped collections Spark: Installing spark, spark applications, jobs, stages and tasks, Resilient Distributed Databases, anatomy of a Spark job run, Spark on YARN SCALA: Introduction, classes and objects, basic types and operators, built-in control structures, functions and closures, inheritance. 	09
V	Hadoop Eco System Frameworks : Applications on Big Data using Pig, Hive and HBase Pig - Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators,	09

	Hive - Apache Hive architecture and installation, Hive shell, Hive services, Hive
	metastore, comparison with traditional databases, HiveQL, tables, querying data and user
	uenned functions, sorting and aggregating, Map Reduce scripts, joins & subqueries.
	HDase – Hoase concepts, chefts, example, Hoase vs KDBIVIS, advanced usage, schema design advance indexing. Zookeenen how it halms in monitoring a alvater how to build
	aesign, advance indexing, Zookeeper – now it nerps in monitoring a cluster, now to build
	IPM Big Data stratagy introduction to Information BigInsights and Big Shoots
	introduction to Rig SOL
Toyt be	nitroduction to big SQL.
	Michael Minelli Michelle Chembers and Ambige Dhirei "Big Date Big Analytics: Emerging Business
1.	Intelligence and Analytic Trends for Today's Businesses" Wiley
2.	Big-Data Black Book, DT Editorial Services, Wiley
3.	Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for
	Enterprise Class Hadoop and Streaming Data", McGrawHill.
4.	Thomas Erl, Wajid Khattak, Paul Buhler, "Big Data Fundamentals: Concepts, Drivers and Techniques", Prentice
	Hall.
5.	Bart Baesens "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY
	Big Data Series)", John Wiley & Sons
6.	ArshdeepBahga, Vijay Madisetti, "Big Data Science & Analytics: A HandsOn Approach ", VPT
7.	Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP
8.	Tom White, "Hadoop: The Definitive Guide", O'Reilly.
9.	Eric Sammer, "Hadoop Operations", O'Reilly.
10.	Chuck Lam, "Hadoop in Action", MANNING Publishers
11.	Deepak Vohra, "Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools",
	Apress
12.	E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilly
13.	Lars George, "HBase: The Definitive Guide", O'Reilly.
14.	Alan Gates, "Programming Pig", O'Reilly.
15.	Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer
16.	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons
17.	Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons

18. Pete Warden, "Big Data Glossary", O'Reilly

]	mage F	Processi	ng						
			Cour	se Outo	come (C O)]	Bloom'	s Know	ledge I	Level (k	CL)
				At	the end	l of cou	irse , th	e stude	nt will	be able	:				
CO 1	Exp qua	lain the ntizatic	e basic on and	concep color n	ots of ty nodel.	wo-din	nension	al sign	al acqu	isition,	sampl	ing,		K	., K ₂
CO 2	App freq	Apply image processing techniques for image enhancement in both the spatial and K ₂ , K ₃ requency domains.													
CO 3	Apply and compare image restoration techniques in both spatial and frequency domain. K ₂ , K ₃												L ₂ , K ₃		
CO 4	Con	npare e	dge ba	sed and	d regio	n basec	l segme	entation	ı algori	ithms f	or ROI	extrac	tion.	K	3, K4
CO 5	Exp	lain co	mpress	sion tec	hnique	es and c	lescrip	tors for	image	proces	sing.			K	L ₂ , K ₃
CO\PC)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Mappin	ng														
CO1		3	2	1	1	2	1	1	2	1	1	1	2	3	2
CO2		3	2	2	2	1	1	1	2	1	2	2	1	3	2
CO3		2	3	3	3	2	2	2	2	1	1	1	1	2	3
CO4		3	2	3	3	2	2	1	2	1	1	2	1	3	2
CO5		3	1	1	2	2	1	2	2	2	1	2	2	3	1

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed
	DICITAL IMACE EUNDAMENTAL S. Store in Divital Image Decossing Components	Lecture
I	Elements of Visual Perception – Image Sensing and Acquisition – Image Sampling and Quantization – Relationships between pixels – Color image fundamentals – RGB, HSI models, Two-dimensional mathematical preliminaries, 2D transforms – DFT, DCT.	08
II	IMAGE ENHANCEMENT: Spatial Domain: Gray level transformations – Histogram processing – Basics of Spatial Filtering– Smoothing and Sharpening Spatial Filtering, Frequency Domain: Introduction to Fourier Transform– Smoothing and Sharpening frequency domain filters – Ideal, Butterworth and Gaussian filters, Homomorphic filtering, Color image enhancement.	08
III	IMAGE RESTORATION: Image Restoration – degradation model, Properties, Noise models – Mean Filters – Order Statistics – Adaptive filters – Band reject Filters – Band pass Filters – Notch Filters – Optimum Notch Filtering – Inverse Filtering – Wiener filtering	08
IV	IMAGE SEGMENTATION: Edge detection, Edge linking via Hough transform – Thresholding – Region based segmentation – Region growing – Region splitting and merging – Morphological processing- erosion and dilation, Segmentation by morphological watersheds – basic concepts – Dam construction – Watershed segmentation algorithm.	08

V	IMAGE COMPRESSION AND RECOGNITION: Need for data compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPEG standard, MPEG. Boundary representation, Boundary description, Fourier Descriptor, Regional Descriptors – Topological feature, Texture – Patterns and Pattern classes – Recognition based on matching.								
Text bo	oks:								
1.Rafa	el C. Gonzalez, Richard E. Woods, Digital Image Processing Pearson, Third Edition, 2010								
2. Anil K. Jain, Fundamentals of Digital Image Processing Pearson, 2002.									
3.Kenr	3. Kenneth R. Castleman, Digital Image Processing Pearson, 2006.								
4.Rafa	el C. Gonzalez, Richard E. Woods, Steven Eddins, Digital Image Processing using MATLAB Pearson	Education,							
Inc.,	2011.								
5.D,E.	Dudgeon and RM. Mersereau, Multidimensional Digital Signal Processing Prentice Hall Professional	Technical							
Refe	rence, 1990.								
6.Willi	am K. Pratt,Digital Image Processing John Wiley, New York, 2002								
7.Mila	n Sonka et al Image processing, analysis and machine vision Brookes/Cole, Vikas Publishing House, 2	2nd edition,							
1999									

						R	eal Tin	ne Syste	m							
			Cours	e Outc	ome (C	C O)				ŀ	Bloom's	s Know	ledge I	level (k	KL)	
				Att	the end	of cour	rse , the	e studer	nt will k	e able:						
CO 1	illust	llustrate the need and the challenges in the design of hard and soft real time systems.													K ₃	
CO 2	Com	Compare different scheduling algorithms and the schedulable criteria.													K_4	
CO 3	Disc	Discuss resource sharing methods in real time environment.													K ₃	
CO 4	Compare and contrast different real time communication and medium access control techniques.											K	K4, K5			
CO 5	Anal	yze rea	al time	Operat	ting sys	stem an	nd Com	mercia	l datab	ases				K	L ₂ , K ₄	
CO \ P Mappir	O ng	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3	3	2	2	2	2			2	2	2	3	3	3	
CO2	CO2 3		3	3	3	3	3			2	2	1	3	3	3	
CO3		3	3	3	3	3	3	2		2	2	2	3	3	3	
CO4		3	3	3	3	3	3	2	2	2	2	1	3	3	3	
CO5		3	3	3	3	3	3	2	2	2	2	1	3	3	3	

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introduction Definition, Typical Real Time Applications: Digital Control, High Level Controls, Signal Processing etc., Release Times, Deadlines, and Timing Constraints, Hard Real Time Systems and Soft Real Time Systems, Reference Models for Real Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency.	05
II	Real Time Scheduling Common Approaches to Real Time Scheduling: Clock Driven Approach, Weighted Round Robin Approach, Priority Driven Approach, Dynamic Versus Static Systems, Optimality of EffectiveDeadlineFirst (EDF) and Least-Slack-Time-First (LST) Algorithms, Rate Monotonic Algorithm, Offline Versus Online Scheduling, Scheduling Aperiodic and Sporadic jobs in Priority Driven and Clock Driven Systems.	09
III	Resources Sharing Effect of Resource Contention and Resource Access Control (RAC), Non-preemptive Critical Sections, Basic Priority-Inheritance and Priority-Ceiling Protocols, Stack Based Priority-Ceiling Protocol, Use of Priority-Ceiling Protocol in Dynamic Priority Systems, Preemption Ceiling Protocol, Access Control in Multiple-Unit Resources, Controlling Concurrent Accesses to Data Objects.	09

IV	Re Ba of Di Int	Real Time Communication Basic Concepts in Real time Communication, Soft and Hard RT Communication systems, Model of Real Time Communication, Priority-Based Service and Weighted Round-Robin Service Disciplines for Switched Networks, Medium Access Control Protocols for Broadcast Networks, Internet and Resource Reservation Protocols									
V	Re Fe da	Real Time Operating Systems and DatabasesFeatures of RTOS, Time Services, UNIX as RTOS, POSIX Issues, Characteristic of Temporal data, Temporal Consistency, Concurrency Control, Overview of Commercial Real Time databases									
Text b	ooks	:									
	1.	Real Time Systems by Jane W. S. Liu, Pearson Education Publication.									
	2.	Phillip A Laplanta, SeppoJ. Ovaska Real time System Design and Analysis Tools for practitioner, Wiley									
	3.	Mall Rajib, "Real Time Systems", Pearson Education									

4. Albert M. K. Cheng, "Real-Time Systems: Scheduling, Analysis, and Verification", Wiley.

						Da	ata Coi	npressi	ion						
			Course	e Outco	ome (C	CO)					Bloom'	s Know	ledge l	Level (F	KL)
				At th	e end o	of cours	se , the	studen	t will b	e able	to				
CO 1	Descr Techr	ribe the niques.	evoluti	on and	fundam	ental co	oncepts	of Data	a Comp	ression	and Co	oding		K	K ₁ , K ₂
CO 2	Apply comp	bly and compare different static coding techniques (Huffman & Arithmetic coding) for text K ₂ , K ₃ hpression.													
CO 3	Apply comp	Apply and compare different dynamic coding techniques (Dictionary Technique) for text K ₂ , l compression.													K ₂ , K ₃
CO 4	Evalu	ate the	perforn	nance of	f predic	ctive co	ding teo	chnique	for Im	age Co	mpressi	on.		K	K_2, K_3
CO 5	Apply	y and co	ompare	differer	nt Quan	tizatior	n Techn	iques fo	or Imag	e Com	pression	l .		ŀ	K ₂ ,K ₃
CO \ F Mappi	PO ing	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01		3	2	1	3	1	1	1	1	1	1	1	2	3	3
CO2	CO2 3 2		2	3	1	2	1	1	1	1	1	1	3	3	
CO3		3	2	2	3	1	2	1	1	1	1	1	1	3	3
CO4		3	2	1	3	1	1	1	1	1	1	1	1	3	3
CO5		3	2	1	3	1	1	1	1	1	1	1	1	3	3

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Compression Techniques: Loss less compression, Lossy Compression, Measures of performance, Modeling and coding, Mathematical Preliminaries for Lossless compression: A brief introduction to information theory, Models: Physical models, Probability models, Markov models, composite source model, Coding: uniquely decodable codes, Prefix codes.	08
II	The Huffman coding algorithm: Minimum variance Huffman codes, Adaptive Huffman coding: Update procedure, Encoding procedure, Decoding procedure. Golomb codes, Rice codes, Tunstall codes, Applications of Hoffman coding: Loss less image compression, Text compression, Audio Compression.	08
III	Coding a sequence, Generating a binary code, Comparison of Binary and Huffman coding, Applications: Bi-level image compression-The JBIG standard, JBIG2, Image compression. Dictionary Techniques: Introduction, Static Dictionary: Diagram Coding, Adaptive Dictionary. The LZ77 Approach, The LZ78 Approach, Applications: File Compression-UNIX compress, Image Compression: The Graphics Interchange Format (GIF), Compression over Modems: V.42 bits, Predictive Coding: Prediction with Partial match (ppm): The basic algorithm, The ESCAPE SYMBOL, length of context, The Exclusion Principle, The Burrows-Wheeler Transform: Movetofront coding, CALIC, JPEG-LS, Multi-resolution Approaches, Facsimile Encoding,	08

	Dynamic Markoy Compression.	
IV	Distortion criteria, Models, Scalar Quantization: The Quantization problem, Uniform Quantizer	08
IV	Adaptive Quantization, Non uniform Quantization.	Vð
V	Advantages of Vector Quantization over Scalar Quantization, The Linde-Buzo-Gray Algorithm, Tree structured Vector Quantizers. Structured VectorQuantizers.	08
Text bo	poks:	
2. Elem	ents of Data Compression, Drozdek, Cengage Learning	
3. Intro	duction to Data Compression, Second Edition, Khalid Sayood, The Morgan aufmann Series	
4.Data	Compression: The Complete Reference 4th Edition byDavid Salomon, Springer	
J. 1 CAL	Compression is Edución by Trinouny C. Ben Frencice Han	

					Se	oftwar	e Engi	neerin	g Lab							
			Cours	e Outc	ome (C	CO)				1	Bloom's	Know	ledge L	Level (K	L)	
				At th	ne end	of cour	se , the	studen	t will b	e able t	0					
CO 1	Ident state	tify amb functio	oiguities mal and	s, incons non-fu	sistenci nctiona	es and i l requir	incomp ement	leteness	s from a	require	ements s	pecific	ation an	^{id} K	K2, K4	
CO 2	Ident diag	entify different actors and use cases from a given problem statement and draw use case agram to associate use cases with different types of relationship													K3, K5	
CO 3	Drav	Draw a class diagram after identifying classes and association among them												K	K4, K5	
CO 4	Grap the le	ohically ogical s	represe equence	nt var e of acti	ious Ul vities u	ML dia ndergo	grams ing in a	, and a system	associat , and re	ions an present	ong the them pi	em and ctoriall	l identif y	^у к	K4, K5	
CO 5	Able	to use	modern	engine	ering to	ols for	specific	cation, c	lesign, i	mpleme	entation	and tes	sting	K	K3, K4	
CO \ P Mappin	O ng	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01		3	3	3	2	3	2	2	1	1		1	3	3	3	
CO2	,	3	3	3	3	3	2	2		1		1	3	3	3	
CO3		3	3	3	3	3	2	2		1		1	2	3	3	
CO4		3	3	3	3	3	2	2		1		1	1	3	3	
CO5		3	3	3	3	3	2	2		1		1	1	3	3	

DETAILED SYLLABUS

For any given case/ problem statement do the following;

- 1. Prepare a SRS document in line with the IEEE recommended standards.
- 2. Draw the use case diagram and specify the role of each of the actors. Also state the precondition, postcondition and function of each use case.
- 3. Draw the activity diagram.
- 4. Identify the classes. Classify them as weak and strong classes and draw the class diagram.
- 5. Draw the sequence diagram for any two scenarios.
- 6. Draw the collaboration diagram.
- 7. Draw the state chart diagram.
- 8. Draw the component diagram.
- 9. Perform forward engineering in java. (Model to code conversion)

10. Perform reverse engineering in java. (Code to Model conversion) 11. Draw the deployment diagram.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (Open Office , Libra , Junit, Open Project , GanttProject , dotProject, AgroUML, StarUML etc.)

Software Engineering Lab : Mapping with Virtual Lab

Name of the Lab	Name of the Experiment
	Identifying the Requirements from Problem Statements
	Estimation of Project Metrics
	Modeling UML Use Case Diagrams and Capturing Use Case Scenarios
	E-R Modeling from the Problem Statements
	Identifying Domain Classes from the Problem Statements
Software Engineering Lab (KCS-661)	Statechart and Activity Modeling
	Modeling UML Class Diagrams and Sequence diagrams
	Modeling Data Flow Diagrams
	Estimation of Test Coverage Metrics and Structural Complexity
	Designing Test Suites

						Web 7	Fechno	logy L	ab						
			Course	e Outco	ome (C	0)					Bloom'	s Knov	vledge	e Level (KL)
				At th	e end o	of cours	se, the	studen	t will be	e able t	0				
CO 1	Deve	Develop static web pages using HTML													
CO 2	Deve	Develop Java programs for window/web-based applications.													K ₂ , K ₃
CO 3	Desig	Design dynamic web pages using Javascript and XML.													K ₃ , K ₄
CO 4	Desig	Design dynamic web page using server site programming Ex. ASP/JSP/PHP													K ₃ , K ₄
CO 5	Design server site applications using JDDC,ODBC and section tracking API														K ₃ , K ₄
	PSO														PSO/
Course C	code:				Pr	ogram	me Ou	tcome	(PO)					APO	APO
KCS-5	52	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01		3	3		3	3		3		2		3	3		3
CO2		3	3	3	2	2	3	3		2	3	3	3		3
CO3		3	2	3	3	3		3		2	3	3	2		3
C04		3		2		3				2		3	2		3
CO5		3	3			3				2		2	3	2	3
PO Tar	get	3	2.7	2.7	2.7	2.8	3	3		2	3	2.8	2.6	2	3

DETAILED SYLLABUS

This lab is based on the Web Technologies. Some examples are as follows:

- 1. Write HTML/Java scripts to display your CV in navigator, your Institute website, Department Website and Tutorial website for specific subject
- 2. Write an HTML program to design an entry form of student details and send it to store at database server like SQL,Oracle or MS Access.
- 3. Write programs using Java script for Web Page to display browsers information.
- 5. Write a Java applet to display the Application Program screen i.e. calculator and other.
- 6. Writing program in XML for creation of DTD, which specifies set of rules. Create a style sheet in CSS/ XSL & displaythe document in internet explorer.
- Program to illustrate JDBC connectivity. Program for maintaining database by sending queries. Design and implementa simple servlet book query with the help of JDBC & SQL. Create MS Access Database, Create on ODBC link, Compile & execute JAVA JDVC Socket.
- 8. Install TOMCAT web server and APACHE. Access the above developed static web pages for books web site, using these servers by putting the web pages developed.
- 9. Assume four users user1, user2, user3 and user4 having the passwords pwd1, pwd2, pwd3 and pwd4 respectively. Write a servlet for doing the following. Create a Cookie and add these four user id's and passwords to this Cookie. 2. Read the user id and passwords entered in the Login form and authenticate with the values available in the cookies.
- 10. Install a database (Mysql or Oracle). Create a table which should contain at least the following fields: name, password,email-id, phone number Write a java program/servlet/JSP to connect to that database and extract data from the tables and display them. Insert the details of the users who register with the web site, whenever a new user clicks the submit button in the registration page.
- 11. Write a JSP which insert the details of the 3 or 4 users who register with the web site by using registration form. Authenticate the user when he submits the login form using the user name and password from the database
- 12. Design and implement a simple shopping cart example with session tracking API.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (Java , JSP , Bootstrap Firebug , WampServer , MongoDB, etc)

					Co	mputer	Netwo	orks La	b							
		C	ourse C	utcom	e (CO))				Blo	om's k	Knowle	edge Levo	el (KL)		
At the end of course , the student will be able to																
CO 1	Simulate different network topologies.													K ₃ , K ₄		
CO 2	Implem	plement various framing methods of Data Link Layer.														
CO 3	Implem	mplement various Error and flow control techniques.														
CO 4	Implement network routing and addressing techniques.												K ₃ , K ₄			
CO 5	Implem	mplement transport and security mechanisms												K ₃ , K ₄		
Course Code: KCS553		Programme Outcome (PO) PSO/ APO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
C01	2	2	3	3	3	-	-	-	-	-	2	2	3	2		
CO2	2		2	2	3	-	-	-	-	-	-	2	3	2		
CO3	2	2	3	3	3	-	-	-	-	-	2	2	3	2		
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	2		
C05	3	2	3	2	3	-	-	-	-	-	2	2	3	2		
PO Targe	t 2.4	2.5	2.8	2.6	3.0	0.0	0.0	0.0	0.0	0.0	2.0	2.2	3.0	2.0		

DETAILED SYLLABUS

- 1. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 2. Study of Socket Programming and Client Server model
- 3. Write a code simulating ARP /RARP protocols.
- 4. Write a code simulating PING and TRACEROUTE commands5. Create a socket for

HTTP for web page upload and download. 6. Write a program to implement RPC (Remote Procedure Call)

- 7. Implementation of Subnetting.
- 8. Applications using TCP Sockets like
- a. Echo client and echo server b. Chat c. File Transfer
- 9. Applications using TCP and UDP Sockets like d. DNS e. SNMP f. File Transfer
- 10. Study of Network simulator (NS).and Simulation of Congestion Control Algorithms using NS
- 11. Perform a case study about the different routing algorithms to select the network path with its optimum andeconomical during data transfer. i. Link State routing ii. Flooding iii. Distance vector
- 12. To learn handling and configuration of networking hardware like RJ-45 connector, CAT-6 cable, crimping tool, etc.
- 13. Configuration of router, hub, switch etc. (using real devices or simulators)
- 14. Running and using services/commands like ping, traceroute, nslookup, arp, telnet, ftp, etc.
- 15.Network packet analysis using tools like Wireshark, tcpdump, etc.
- 16. Network simulation using tools like Cisco Packet Tracer, NetSim, OMNeT++, NS2, NS3, etc.
- 17.Socket programming using UDP and TCP (e.g., simple DNS, data & time client/server, echo client/server, iterative & concurrent servers)

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (C, C++, Java, NS3, Mininet, Opnet, TCP Dump, Wireshark etc.

Open Electives

B.Tech. VI Semester

OPEN ELECTIVE-I

IDEA TO BUSINESS MODEL
REAL TIME SYSTEMS
EMBEDDED SYSTEM
INTRODUCTION TO MEMS
OBJECT ORIENTED PROGRAMMING
COMPUTER BASED NUMERICAL TECHNIQUES
GIS & REMOTE SENSING
BASICS OF DATA BASE MANAGEMENT SYSTEM
SOFTWARE PROJECT MANAGEMENT
*UNDERSTANDING THE HUMAN BEING COMPREHENSIVELY- HUMAN ASPIRATIONS AND ITS FULFILLMENT

NOTE:

- 1. The Student shall choose an open Elective Subject from the list of open elective courses in such a manner that he/she has not studied the same course in any form during the degree programme.
- 2. The students shall choose an Open Elective course from the prescribed list of open elective courses available at University website for 3rd year (2020-21) in such a manner that he/she has not studied the same subject or allied subject in any semester during the entire degree program.
- 3. Subject to aforesaid condition, the open Elective courses may be offered from the department to all students irrespective of branch. There is no restriction related to branch. The students of any branch (irrespective of department) can select the open elective subjects from the prescribed list of open elective courses.
- 4. * It is mandatory that for subjects (KOE069) only trained Faculty (who had done the FDP for these courses) will teach the courses.

IDEA TO BUSINESS MODEL

Course Objectives:

- 1. This course can motivate students to have an overall idea how to start and sustain a business enterprise.
- 2. The students will learn basics of choosing an idea of a business model.
- 3. The core areas of choosing a business model are encompassed with Entrepreneurship development, PPC & communication system. The students will thus develop basic competencies how to run a business enterprise.

Course				I	Progra	mme O	utcom	e (PO)					PSO	PSO
Code:	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO-1	-	-	-	-	-	2	2	2	-	-	1	2	-	-
CO-2	-	-	-	-	-	1	1	1	-	-	-	1	-	-
CO-3	-	-	-	-	-	1	1	1	-	-	-	1	-	-
CO-4	-	-	-	-	-	2	3	2	2	-	1	2	-	-
CO-5	-	-	-	-	-	2	3	2	2	-	1	2	-	-
PO Target	-	-	-	-	-	1.6	2	1.6	2	-	1	1.6	-	-

Unit	Topics	Lectures
I	Introduction Search for a business idea- How to choose an idea- Product idea- selection of product- The adoption process- Product innovation- Production , planning and development strategy- New product idea.	8
П	Introduction to Entrepreneurship - Meaning and concept of entrepreneurship- Difference between Entrepreneurship & wage employment - Functions of an Entrepreneur Entrepreneur vs Manager- role of entrepreneurship in economic development – Barriers to entrepreneurship.	8
III	The Entrepreneur - types of entrepreneurs- Competencies required to become an entrepreneur - Creative and Design Thinking, the entrepreneurial decision process- The process of Entrepreneurial development prog (EDP)- Evaluation of EDP - Entrepreneur development training.	8
IV	Production system- Design of production system- Types of production system- Production, planning & control (PPC) - Steps of PPC.	8
V	Communication- Importance of communication system - barriers to communication - listening to people- the power of talk - personal selling - risk taking & resilience - negotiation.	8

Text Books:

- 1. Entrepreneurship Development- Sangeeta Sharma, Kindle edition
- 2. Production & operations Management- Kanishka Bedi, 3. Marketing Management- Philip Kotler.
- 4. The Business Model Book: Design, build and adapt business ideas that drive business growth: Adam Bock , Gerard George

REAL TIME SYSTEM

Course Outcomes: At the end of this course students will demonstrate the ability to:

1. Describe concepts of Real-Time systems and model	ing.
---	------

2. Recognize the characteristics of a real-time system in context with real time scheduling.

3. Classify various resource sharing mechanisms and their related protocols.

4. Interpret the basics of real time communication by the knowledge of real time models and protocols.

5. Apply the basics of RTOS in interpretation of real time systems.

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	2			2	2	2	3	3	3
CO2	3	3	3	3	3	3			2	2	1	3	3	3
CO3	3	3	3	3	3	3	2		2	2	2	3	3	3
CO4	3	3	3	3	3	3	2	2	2	2	1	3	3	3

REAL TIME SYSTEMS

Unit	Topics	Lectures
Ι	Introduction	8
	Definition, Typical Real Time Applications: Digital Control, High Level	
	Controls, Signal Processing etc., Release Times, Dead-lines, and Timing	
	Constraints, Hard Real Time Systems and Soft Real Time Systems, Reference	
	Models for Real Time Systems: Processors and Resources,	
	Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence	
	Constraints and Data Dependency.	
II	Real Time Scheduling	8
	Common Approaches to Real Time Scheduling: Clock Driven Approach,	
	Weighted Round Robin Approach, Priority Driven Approach, Dynamic Versus	
	Static Systems, Optimality of Effective-Deadline-First (EDF) and	
	Least-Slack-Time-First (LST) Algorithms, Rate Monotonic Algorithm, Offline	
	Versus Online Scheduling, Scheduling Aperiodic and Sporadic jobs in Priority	
	Driven and Clock Driven Systems.	

III	Resources Sharing Effect of Resource Contention and Resource Access Control (RAC), Non- preemptive Critical Sections, Basic Priority-Inheritance and Priority-Ceiling Protocols, Stack Based Priority- Ceiling Protocol, Use of Priority-Ceiling Protocol in Dynamic Priority Systems, Preemption Ceiling Protocol, Access Control in Multiple-Module Resources, Controlling Concurrent Accesses to Data Objects.	8
IV	Real Time Communication Basic Concepts in Real time Communication, Soft and Hard RT Communication systems, Model of Real Time Communication, Priority- Based Service and Weighted Round-Robin Service Disciplines for Switched Networks, Medium Access Control Protocols for Broadcast Networks, Internet and Resource Reservation Protocols.	
V	Real Time Operating Systems and Databases Features of RTOS, Time Services, UNIX as RTOS, POSIX Issues, Characteristic of Temporal data, Temporal Consistency, Con-currency Control, Overview of Commercial Real Time databases.	8

Text Books:

1. Real Time Systems – Jane W. S. Liu, Pearson Education Publication.

Reference Books:

- 1. Real Time Systems Mall Rajib, Pearson Education
- 2. Real-Time Systems: Scheduling, Analysis, and Verification Albert M. K. Cheng, Wiley.

EMBEDDED SYSTEM

COURSE OBJECTIVE: *After completion of the course student will be able to:*

- 1. Attain the knowledge of embedded system and its development environment.
- 2. Gain the knowledge of RTOS based embedded system design and its applications.

COURSE OUTCOME: *After completion of the course student will be able to:* **CO1:** Understand the basics of embedded system and its structural units.

CO2: Analyze the embedded system specification and develop software programs.

CO3: Evaluate the requirements of the programming embedded systems, related software architecture.

CO4: Understand the RTOS based embedded system design.

CO5: Understand all the applications of the embedded system and designing issues.

CO/PO MAPPING:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	3	3	1	_	-	-	-	-	3	3
CO2	2	2	3	2	3	3	1	_	2	-	-	-	3	3
CO3	2	2	3	2	3	3	1	-	2	-	-	_	3	3
CO4	2	2	3	2	3	3	1	_	2	_	-	3	3	3
CO5	2	2	3	2	3	3	1	_	2	_	-	3	3	3
Avg	2	2	3	2	3	3	1	-	2		-	3	3	3

EMBEDDED SYSTEM								
Unit	Торіс	Lectures						
1	Introduction to Embedded Systems: Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.	8						
2	Embedded Networking: Embedded Networking: Introduction, I/O Device Ports & Buses– Serial Bus communication protocols – RS232 standard – RS422 – RS485 – CAN Bus - Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I2C) –need for device drivers.	8						
3	Embedded Firmware Development Environment: Embedded Product Development Life Cycle objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.	8						

4	RTOS Based Embedded System Design: Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non preemptive scheduling, Task communication shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, 4C/OS-II, RT Linux.	8
5	Embedded System Application Development: Design issues and techniques Case Study of Washing Machine- Automotive Application- Smart card System Application.	8

Text Books:

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computer System Design", Elsevier, 2006.
- 2. Michael J. Pont, "Embedded C", Pearson Education, 2007.
- 3. Steve Heath, "Embedded System Design", Elsevier, 2005.
- 4. Muhammed Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051
- 5. Microcontroller and Embedded Systems", Pearson Education, Second edition, 2007.

INTRODUCTION TO MEMS

COURSE OBJECTIVE: *After completion of the course student will be able to:*

- 1. Understand the Basic concept of MEMS, Mechanics of Beam and Diaphragm Structures, Air Damping and Electrostatic Actuation.
- 2. Know the knowledge of Thermal Effects and the Applications of MEMS in RF.

COURSE OUTCOME: *After completion of the course student will be able to:*

CO1: Understand the Basic concept of MEMS Fabrication Technologies, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.

CO2: Explain Mechanics of Beam and Diaphragm Structures.

CO3: Understand the Basic concept of Air Damping and Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model. CO4: Know the concept of Electrostatic Actuation.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2			2	
CO2	3									3			3	
CO3	2				2					2			2	
CO4		3			3				3	2			2	
Average* (Roundedto nearest integer)	3	3			3				3	2			2	

CO4: Understand the applications of MEMS in RF

INTRODUCTION TO MEMS								
Unit	Торіс	Lectures						
1	Introduction to MEMS: MEMS Fabrication Technologies, Materials and Substrates for MEMS, Processes for Micromachining, Characteristics, Sensors/Transducers, Piezoresistance Effect, Piezoelectricity, Piezoresistive Sensor.	8						
2	Mechanics of Beam and Diaphragm Structures: Stress and Strain, Hooke's Law. Stress and Strain of Beam Structures: Stress, Strain in a Bent Beam, Bending Moment and the Moment of Inertia, Displacement of Beam Structures Under Weight, Bending of Cantilever Beam Under Weight.	8						
3	Air Damping: Drag Effect of a Fluid: Viscosity of a Fluid, Viscous Flow of a Fluid, Drag Force Damping, The Effects of Air Damping on Micro-Dynamics. Squeeze-film Air Damping: Reynolds' Equations for Squeeze-film Air Damping, Damping of Perforated Thick Plates. Slide-film Air Damping: Basic Equations for Slide-film Air Damping, Couette-flow Model, Stokes-flow Model.	8						
4	Electrostatic Actuation: Electrostatic Forces, Normal Force, Tangential Force, Fringe Effects, Electrostatic Driving of Mechanical Actuators: Parallel-plate Actuator, Capacitive sensors. Step and Alternative Voltage Driving: Step Voltage Driving, Negative Spring Effect and Vibration Frequency.	8						
5	Thermal Effects: Temperature coefficient of resistance, Thermo-electricity, Thermocouples, Thermal and temperature sensors. Applications of MEMS in RF MEMS Resonator Design Considerations, One-Port Micromechanical Resonator Modeling Vertical Displacement Two-Port Microresonator Modeling, Micromechanical Resonator Limitations.	8						

Text & Reference Books:

- G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K. N. Bhat and V. K. Atre, "Micro and smart systems", Wiley India, 2010.
- 2. S.M. Sze, "Semiconductor Sensors", John Wiley & Sons Inc., Wiley Interscience Pub.
- 3. M.J. Usher, "Sensors and Transducers", McMillian Hampshire.
- 4. RS Muller, Howe, Senturia and Smith, "Micro sensors", IEEE Press.

OBJECT ORIENTED PROGRAMMING

COURSE OBJECTIVE: After completion of the course student will be able to:

1. Understand the Basic concept of Object Orientation, object identity and Encapsulation.

2. Know the knowledge of Basic Structural Modeling, Object Oriented Analysis and C++ Basics.

COURSE OUTCOME: After completion of the course student will be able to:

CO1: Understand the Basic concept of Object Orientation, object identity and Encapsulation.

CO2: Understand the Basic concept of Basic Structural Modeling.

CO3: Know the knowledge of Object oriented design, Object design.

CO4: Know the knowledge of C++ Basics.

CO5: Understand the Basics of object and class in C++.

Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	_		_		_	_	_	_				_	
CO2	3	_	-	_	-	_	_	_	_			-	_	_
CO3	3	_	_	_	_	_	_	_	_	_	_	_	_	_
CO4	3	2	3	_	_	_	_	_	_	_	_	_	_	2
CO5	3	3	3	2	_	_	_	_	_	_	_	_	_	2
AVG	3	2.6	3	2.5	_	_	_	_	_	_	_	_	_	

	OBJECT ORIENTED PROGRAMMING	
Unit	Торіс	Lectures
1	Introduction: The meaning of Object Orientation, object identity, Encapsulation, information hiding, polymorphism, generosity, importance of modelling, principles of modelling, object oriented modelling, Introduction to UML, conceptual model of the UML, Architecture.	8

2	Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Class &Object Diagrams: Terms, concepts, modelling techniques for Class & Object Diagrams. Collaboration Diagrams: Terms, Concepts, depicting a message, polymorphism in collaboration Diagrams, iterated messages, use of self in messages. Sequence Diagrams: Terms, concepts, depicting asynchronous messages with/without priority, call-back mechanism, broadcast messages. Basic Behavioural Modeling: Use cases, Use case Diagrams, Activity Diagrams, State Machine , Process and thread, Event and signals, Time diagram, interaction diagram, Package diagram. Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams	8
3	Object Oriented Analysis: Object oriented design, Object design, Combining three models, Designing algorithms, design optimization, Implementation of control, Adjustment of inheritance, Object representation, Physical packaging, Documenting design considerations. Structured analysis and structured design (SA/SD), Jackson Structured Development (JSD).Mapping object oriented concepts using non-object oriented language, Translating classes into data structures, Passing arguments to methods, Implementing inheritance, associations encapsulation. Object oriented programming style: reusability, extensibility, robustness, programming in the large. Procedural v/s OOP, Object oriented language features. Abstraction and Encapsulation.	8
4	C++ Basics : Overview, Program structure, namespace, identifiers, variables, constants, enum, operators, typecasting, control structures C++ Functions : Simple functions, Call and Return by reference, Inline functions, Macro Vs. Inline functions, Overloading of functions, default arguments, friend functions, virtual functions	8
5	Objects and Classes : Basics of object and class in C++, Private and public members, static data and function members, constructors and their types, destructors, operator overloading, type conversion. Inheritance : Concept of Inheritance, types of inheritance: single, multiple, multilevel, hierarchical, hybrid, protected members, overriding, virtual base class Polymorphism : Pointers in C++, Pointes and Objects, this pointer, virtual and pure virtual functions, Implementing polymorphism	8

Text Books:

1. James Rumbaugh et. al, "Object Oriented Modeling and Design", PHI

2. Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modeling Language User Guide", Pearson Education

3. Object Oriented Programming with C++, E Balagurusamy, TMH

Reference Books:

1. R. S. Salaria, Mastering Object Oriented Programming with C++, Khanna Publishing House

2. C++ Programming, Black Book, Steven Holzner, dreamtech

3. Object Oriented Programming in Turbo C++, Robert Lafore, Galgotia

4. Object Oriented Programming with ANSI and Turbo C++, Ashok Kamthane, Pearson

5. The Compete Reference C++, Herbert Schlitz, TMH

6. C++ and Object Oriented Programming Paradigm, PHI

7. C++ : How to Program, 9th Edition, Deitel and Deitel, PHI

COMPUTER BASED NUMERICAL TECHNIQUES

Course Objectives:

The objective of this course is to familiarize the graduate engineers with techniques in errors, approximations, approximates roots, Interpolation, finite differences, numerical differentiation and integration programming, numerical solution of differential equations and boundary value problems. It aims to equip the students with standard concepts and tools from previously gained knowledge to an advanced level that will enable them to tackle more advanced level of Optimization techniques and applications that they would find useful in their disciplines.

COURSE OUTCOME : The students will learn:

	Course Outcome (CO)	Bloom's Knowledge Level (KL)
CO 1	Understand the concept of errors to evaluate approximate roots of several types of equations	K ₂ & K ₅
CO 2	Analyze the problem and evaluate data by different interpolation methods and creating interpolating graphs	K4, K5&K6
CO 3	Understand the concept of interpolation to analyze and evaluate the numerical differentiation and integration	K ₂ & K ₅
CO 4	Remember the concept of formula based the solution of ordinary differential equations to evaluate differential equations withy initial conditions	K1&K5

 $K_1-Remember,\ K_2-Understand,\ K_3-Apply,\ \ K_4-Analyze$

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	1	2	1	-	-	-	-	-	-	3

	COMPUTER BASED NUMERICAL TECHNIQUES	
Unit	Торіс	Lectures
1	Error and roots of Algrabraic and Transcendental Equations: Introduction of Numbers and their accuracy, Computer Arithmetic, Mathematical preliminaries, Errors and their Computation, General error formula, Error in a series approximation. Solution of Algebraic and Transcendental Equation: Bisection Method, Iteration method, Method of false position, Newton-Raphson method, Methods of finding real and complex roots, Muller's method, Rate of convergence of Iterative methods, Polynomial Equations.	8
2	Interpolation: Introduction Finite Differences, Difference tables Polynomial Interpolation: Newton's forward and backward formula Central Difference Formulae: Gauss forward and backward formula, Stirling's, Bessel's, Everett's formula. Interpolation with unequal intervals: Lagrange's Interpolation, Newton Divided difference formula, Hermite's Interpolation.	8
3	Numerical Integration and Differentiation: Introduction: Numerical differentiation of Newton's forward and backward formula, Stirling's, Bessel's, Everett's formula, Lagrange's Interpolation and Newton Divided difference formula. Numerical Integration: Newton cotes formula, Trapezoidal rule, Simpson's 1/3 and 3/8 rules, Boole's rule, Waddle's rule.	8
4	Solution of differential Equations: Introduction, Picard's Method, Euler's Method, Taylor's Method, Runge-Kutta Methods, Predictor Corrector Methods, Automatic Error Monitoring and Stability of solution.	8
5	Boundary Value problems: Introduction, Finite difference method, solving Eigen value problems, polynomial method and power methods. Numerical solution of Partial Differential equations. Elliptic, Parabolic and hyperbolic PDEs. Distillation in a Plate Column, Unsteady-state Operation, Starting a Stirred-tank Reactor, Rate at which a Plate Absorber Approaches Steady State.	8

Note: PS: Practice session: Students should practice the Flow Charts and algorithm of some important programs **Text Books:**

- 1. Jain, Iyengar and Jain, "Numerical Methods for Scientific and Engineering Computations", New Age International.
- 2. Grewal B S, "Numerical methods in Engineering and Science", Khanna Publishers, Delhi.

Reference Books

- 1. Rajaraman V, Computer Oriented Numerical Methods, Pearson Education
- 2. T Veerarajan, T Ramachandran, "Theory and Problems in Numerical Methods, McGraw Hill
- 3. Pradip Niyogi, Numerical Analysis and Algorithms, McGraw Hill.
- 4. Francis Scheld, Numerical Analysis, McGraw Hill.
- 5. Sastry S. S, Introductory Methods of Numerical Analysis, Pearson Education.
- 6. Kiusalaas, J.: Numerical methods in engineering with MATLAB, Cambridge University Press
- 7. Woodford, C and Phillips, C: Numerical methods with worked examples: MATLAB Edition, Springer

GIS & REMOTE SENSING

COURSE OBJECTIVE: Students undergoing this course are expected to-

1. Understand about the principles of GIS, Remote Sensing, Spatial Systems, and its applications to Engineering Problems.

COURSE OUTCOME: *After completion of the course student will be able to-*

CO1: Understand about the principles of Remote Sensing and its advantages and limitations.

CO2: Retrieve the information content of remotely sensed data.

CO3: Apply problem specific remote sensing data for engineering applications.

CO4: Analyze spatial and attribute data for solving spatial problems.

CO5: Create GIS and cartographic outputs for presentation

CO-PO Mapping:

Course								Program Outcomes						Program Specific Outcomes				
Objectives	PO	PO	P	0]	PO	PO	PO	PO	PC)	PO	PO)]	PO1	PO1	PSO1	PSO2	PSO3
		1	2	3	4	5	6	7	8	9	10	1		2				
CO1		S	Η												Η			S
CO2		Η	S												H	S		
CO3					Η			S							Η	S		
CO4													S		S	Η		
CO5				Η	S						S				S	Н		S

N – Not Applicable

S – Supportive

H - Highly Related

GIS & REMOTE SENSING								
Unit	Торіс	Lectures						
1	Basic component of remote sensing (RS), advantages and limitations of RS, possible use of RS techniques in assessment and monitoring of land and water resources; electromagnetic spectrum, energy interactions in the atmosphere and with the Earth's surface; major atmospheric windows; principal applications of different wavelength regions; typical spectral reflectance curve for vegetation, soil and water, spectral signatures.	8						
2	Different types of sensors and platforms; contrast ratio and possible causes of low contrast; aerial photography; types of aerial photographs, scale of aerial photographs, planning aerial photography- end lap and side lap; stereoscopic vision, requirements of stereoscopic photographs; air-photo interpretation- interpretation elements;	8						

3	Photogrammetry- measurements on a single vertical aerial photograph, measurements on a stereo-pair- vertical measurements by the parallax method; ground control for aerial photography; satellite remote sensing, multispectral scanner- whiskbroom and push-broom scanner; different types of resolutions; analysis of digital data- image restoration; image enhancement; information extraction, image classification, unsupervised classification, supervised classification, important consideration in the identification of training areas, vegetation indices.	8
4	Microwave remote sensing. GI Sand basic components, different sources of spatial data, basic spatial entities, major components of spatial data, Basic classes of map projections and their properties.	8
5	Methods of data input into GIS, Data editing, spatial data models and structures, Attribute data management, integrating data (map overlay) in GIS, Application of remote sensing and GIS for the management of land and water resources.	8

Text & Reference Books:

- 1. Reddy Anji, M. 2006. Textbook of Remote Sensing and Geographical Information Systems. BS Publications, Hyderabad.
- 2. Elangovan, K. 2006. GIS Fundamentals Applications and Implementations. New India Publication Agency, New Delhi.
- 3. George Joseph. 2005. Fundamentals of Remote Sensing. 2nd Edition. Universities Press (India) Private Limited, Hyderabad.
- 4. Jensen, J.R. 2013. Remote Sensing of the Environment: An Earth Resource Perspective. Pearson Education Limited, UK.
- 5. Lillesand, T., R.W. Kiefer and J. Chipman. 2015. Remote Sensing and Image Interpretation. 7th Edition, John Wiley and Sons Singapore Pvt. Ltd., Singapore.
- 6. Sabins, F.F. 2007. Remote Sensing: Principles and Interpretation. Third Edition, Waveland Press Inc., Illinois, USA.

BASICS OF DATA BASE MANAGEMENT SYSTEM

	Course Outcome (CO) Bloom's Knowledge Level (K										
At the en	At the end of course , the student will be able to:										
CO 1	Describe the features of a database system and its application and compare various types of data models.										
CO 2	Construct an ER Model for a given problem and transform it into a relation database schema.										
CO 3	Formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.										
CO 4	Explain the need of normalization and normalize a given relation to the	e desired normal form.	K ₂ , K ₃								
CO 5	Explain different approaches of transaction processing and concurrent	cy control.	K ₂								

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	2	2	1	1	2	1	2	2	3	3
CO2	3	3	2	2	3	1	2	1	2	2	3	3	3	3
CO3	3	2	2	2	2	2	1	1	2	1	2	2	3	3
CO4	2	2	3	2	2	2	2	1	2	2	3	2	3	3
CO5	3	3	2	2	3	1	1	1	2	1	2	3	3	3

DETAILED SYLLABUS						
Unit		Lecture				
I	 Introduction: An overview of database management system, database system vs file system, database system concepts and architecture, views of data – levels of abstraction, data models, schema and instances, data independence, database languages and interfaces, data definition languages, DML, overall database structure, transaction management, storage management, database users and administrator. Data Modeling using the Entity Relationship Model: ER model concepts, notation for ER diagram, mapping constraints, keys, concepts of super key, candidate key, primary key, generalization, aggregation, reduction of an ER diagrams to tables, extended ER model, 	08				
	relationships of higher degree.					

II	 Relational Database Concepts: Introduction to relational database, relational database structure, relational model terminology – domains, attributes, tuples, relations & relational database schema, integrity constraints, entity integrity, referential integrity, keys constraints, domain constraints, Relational algebra - relational calculus, tuple and domain calculus, basic operations – selection and projection, set-theoretic operations, join operations. Data Base Design & Normalization: Functional dependencies, normal forms, first, second, & third normal forms, BCNF, inclusion dependence, loss less join decompositions, normalization using FD, MVD, and JDs, alternative approaches to database design 	08
III	Structured Query Language (SQL): Basics of SQL, DDL, DML, DCL, advantage of SQL, SQL data type and literals, types of SQL commands, SQL operators and their procedure, tables – creation & alteration, defining constraints, views and indexes, queries and sub queries, aggregate functions, built-in functions, insert, update and delete operations, joins, unions, intersection, minus, transaction control commands.	08
	PL/SQL: Introduction, features, syntax and constructs, SQL within Pl/SL, DML in PL/SQL Cursors, stored procedures, stored function, database triggers, indices	
IV	 Transaction Processing Concepts: Transaction concepts, properties of transaction, testing of serializability, Serializability of schedules, conflict & view serializable schedule, recoverability, recovery from transaction failures, two-phase commit protocol, log based recovery, checkpoints, deadlock handling. Concurrency Control Techniques: Concurrency control, locking techniques for concurrency control, time stamping protocols for concurrency control, validation based protocol, multiple granularity, multi-version schemes, recovery with concurrent transaction. 	08
V	Database Security – Types of security, system failure, backup & recovery techniques, authorization & authentication, system policies, levels of security – physical, OS, network & DBMS, privileges – grant & revoke. Recent Trends in Database Management Systems: Centralized and Client-Server Architectures, Distributed Databases, Object-Oriented Database, Spatial & Temporal Databases, Decision Support Systems, Data Analysis, Data Mining & Warehousing, Data Visualization, Mobile Databases, OODB & XML Databases, Multimedia & Web Databases, Spatial and Geographical Databases, Web and Mobile Databases, Active Databases	08

Text books:

1.Elmasri, Navathe, "Fundamentals of Database System", Addision Wesley.

- 1. Korth, Silbertz, Sudarshan, "Database Concepts", Mc Graw Hill.
- 2. Bipin C. Desai, "An Introduction to Database System", Galgotia Publication.
- 3. Majumdar & Bhattacharya, "Database Management System", McGraw Hill.
- 4. Date C.J., "An Introduction to Database System", Addision Wesley.
- 5. Ramakrishnan, Gehrke, "Database Management System", McGraw Hill.
- 6. Atul Kahate, "Introduction to Database Management Systems", Pearson Education.
- 7. Paul Beynon Davies, "Database System", Palgrave Macmillan.
- 8. Bharti P.K., "An Introduction to Database Systems", JPNP.
- 9. Rajesh Narang, "Database Management System", PHI.
- 10. Singh, S.K., "Database System Concepts design & application", Pearson Education.
- 11. Leon & Leon, "Database Management Systems", Vikas Publishing House.
- 12. O'Neil, "Databases", Elsevier Pub.
- 13. Ivan Bayross, "SQL, PL/SQL The Programming Language of Oracle", BPB Publications.
- 14. P.S. Deshpande, "SQL and PL/SQL for Oracle 10g, Black Book", Dreamtech Press.
- 15. George Koch, Kevin Loney, "Oracle: The Complete Reference", McGraw Hill.
- 16. Coronel, Morris and Rob, "Database Principles: Fundamentals of Design, Implementation and Management", Cengage Learning.
- 17. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley.

SOFTWARE PROJECT MANAGEMENT

	Course Outcome (CO) Bloom's Know (KL)								
At the o	end of course, the student will be able :								
CO 1	Identify project planning objectives, along with various cost/effort estimation models.								
CO 2	Organize & schedule project activities to compute critical path for risk analysis.	K ₃							
CO 3	Monitor and control project activities.	K4, K5							
CO 4	Formulate testing objectives and test plan to ensure good software quality under SEI-CMM.								
CO 5	Configure changes and manage risks using project management tools.	K ₂ , K ₄							

	P 0 1	P O 2	P 0 3	P 0 4	P 0 5	P 0 6	P O 7	P 0 8	P O 9	P O 10	P 0 11	P O 12	PSO 1	PSO 2
CO 1	3												1	
CO 2	3	2											2	
CO 3		3											3	
CO 4	3	2											1	
CO5			3					1	2	1	2		3	

DETAILED SYLLABUS					
Unit		Lecture			
-					
1	Project Evaluation and Project Planning : Importance of Software Project Management – Activities – Methodologies – Categorization of Software Projects – Setting objectives – Management Principles – Management Control – Project portfolio Management – Cost-benefit evaluation technology – Risk evaluation – Strategic program Management – Stepwise Project Planning.	08			
п	Project Life Cycle and Effort Estimation : Software process and Process Models – Choice of Process models – Rapid Application development – Agile methods – Dynamic System Development Method – Extreme Programming– Managing interactive processes – Basics of Software estimation – Effort and Cost estimation techniques – COSMIC Full function points – COCOMO II – a Parametric Productivity Model	08			

ш	Activity Planning and Risk Management : Objectives of Activity planning – Project schedules – Activities – Sequencing and scheduling – Network Planning models – Formulating Network Model – Forward Pass & Backward Pass techniques – Critical path (CRM) method – Risk identification – Assessment – Risk Planning – Risk Management – PERT technique – Monte Carlo simulation – Resource Allocation – Creation of critical paths – Cost schedules.	08							
IV	Project Management and Control: Framework for Management and control Collection of data Visualizing progress – Cost monitoring Earned Value Analysis – Prioritizing Monitoring – Project tracking – Change control Software Configuration Management – Managing contracts – Contract Management.	08							
v	Staffing in Software Projects :Managing people – Organizational behavior – Best methods of staff selection Motivation – TheOldham Hackman job characteristic model – Stress – Health and Safety – Ethical andProfessional concerns – Working in teams Decision making Organizational structuresDispersed and Virtual teams – Communications genres Communication plans Leadership.	08							
Text b	poks:								
1.	Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, McGra New Delhi, 2012.	aw Hill,							
2.	Robert K. Wysocki —Effective Software Project Management – Wiley Publication, 2011.								
3.	Walker Royce: -Software Project Management- Addison-Wesley, 1998.								
4.	Gopalaswamy Ramesh. —Managing Global Software Projects – McGraw Hill Education (India), I	Fourteenth							

Reprint 2013.

UNDERSTANDING THE HUMAN BEING COMPREHENSIVELY – HUMAN ASPIRATIONS AND ITS FULFILLMENT

Course Objectives:

- 1. To help the students having the clarity about human aspirations, goal, activities and purpose of life.
- 2. To facilitate the competence to understand the harmony in nature/existence and participation of human being in the nature/existence.
- 3. To help the students to develop the understanding of human tradition and its various components.

Course Methodology:

- 1. The methodology of this course is exploration and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
- 2. It is free from any dogma or set of do's and don'ts related to values.
- 3. It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.
- 4. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous self-evolution.
- 5. This self-exploration also enables them to critically evaluate their preconditioning and present beliefs.

Course Outcomes	PO3	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO2
CO1	2	3	3	2	1	2	2	3	2
CO2	2	2	3	2	1	2	1	3	2
CO3	2	2	3	3	2	2		3	2
CO4	2	3	3	2	1	1		3	2
CO5	2	2	3	2	1	2		3	2
Course	2.00	2.40	3.00	2.20	1.20	1.80	1.50	3.00	2.00

CO-PO& PSO Mapping:

UNDERSTANDING THE HUMAN BEING COMPREHENSIVELY- HUMAN ASPIRATIONS AND ITS FULFILLMENT

Unit	Торіс	Lectures		
1	Introduction:			
	The basic human aspirations and their fulfillment through Right understanding and			
	Resolution; All-encompassing Resolution for a Human Being, its details and solution of	of		
	problems in the light of Resolution.			

2	Understanding Human being and its expansion:	
	The domain of right understanding starts from understanding the human being (the knower, the experience and the doer); and extends up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).	8
3	Activities of the Self: Understanding the human being comprehensively is the first step and the core theme of this course; human being as co-existence of the self and the body; the activities and potentialities of the self; Reasons for harmony/contradiction in the self.	8
4	Understanding Co-existence with other orders: The need and the process of inner evolution (through self-exploration, selfawareness and self-evaluation)- particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).	
5	Expansion of harmony from self to entire existence: Understanding different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All-encompassing Resolution covering all four dimensions of human endeavour viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from self to Nature and entire Existence.	8

- A Foundation Course in Human Values and Profession Ethics (Text Book and Teachers' Manual), R. R. Gaur, R. Sangal, G. P. Bagaria (2010), Excel Books, New Delhi [ISBN 978-8-174-46781-2]
- 2. Avartansheel Arthshastra, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- Economy of Permanence (a quest for social order based on non-violence), J. C. Kumarappa (2010), Sarva-Seva-Sangh-Prakashan, Varansi, India
- 4. Energy and Equity, Ivan Illich (1974), The Trinity Press, Worcester & Harper Collins, USA
- 5. Ishandi Nau Upnishad, Shankaracharya, Geeta press, Gorakhpur,
- 6. Manav Vyavahar Darshan, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 7. Manaviya Sanvidhan, A. Nagraj, Divya Path Sansthan, Amarkantak, India

COMMOM NON CREDIT COURSE (NC) (V & VI Semester)

1	KNC501/ KNC601	CONSTITUTION OF INDIA, LAW AND ENGINEERING
2	KNC502/	INDIAN TRADITION, CULTURE AND
	KNC602	SOCIETY

[Effective from the Session: 2020-21]

Non Credit Course 2020-21 AICTE Model Curriculum K series (V & VI Semester)

Page 1

SYLLABUS

1KNC501/CONSTITUTION OF INDIA, LAWKNC601AND ENGINEERING
CONSTITUTION OF INDIA, LAW AND ENGINEERING

Module 1--Introduction and Basic Information about Indian Constitution:

Meaning of the constitution law and constitutionalism, Historical Background of the Constituent Assembly, Government of India Act of 1935 and Indian Independence Act of 1947, Enforcement of the Constitution, Indian Constitution and its Salient Features, The Preamble of the Constitution, Fundamental Rights, Fundamental Duties, Directive Principles of State Policy,

Parliamentary System, Federal System, Centre-State Relations, Amendment of the Constitutional Powers and Procedure, The historical perspectives of the constitutional amendments in India, Emergency Provisions: National Emergency, President Rule, Financial Emergency, and Local Self Government – Constitutional Scheme in India.

Module 2-Union Executive and State Executive:

Powers of Indian Parliament Functions of Rajya Sabha, Functions of Lok Sabha, Powers and Functions of the President, Comparison of powers of Indian President with the United States,

Powers and Functions of the Prime Minister, Judiciary - The Independence of the Supreme

Court, Appointment of Judges, Judicial Review, Public Interest Litigation, Judicial Activism,

LokPal, Lok Ayukta, The Lokpal and Lok ayuktas Act 2013, State Executives – Powers and Functions of the Governor, Powers and Functions of the Chief Minister, Functions of State Cabinet, Functions of State Legislature, Functions of High Court and Subordinate Courts.

Module 3- Introduction and Basic Information about Legal System:

The Legal System: Sources of Law and the Court Structure: Enacted law -Acts of Parliament are of primary legislation, Common Law or Case law, Principles taken from decisions of judges constitute binding legal rules. The Court System in India and Foreign Courtiers (District Court, District Consumer Forum, Tribunals, High Courts, Supreme Court). Arbitration: As an alternative to resolving disputes in the normal courts, parties who are in dispute can agree that this will instead be referred to arbitration. Contract law, Tort, Law at workplace.

Module 4- Intellectual Property Laws and Regulation to Information:

Intellectual Property Laws: Introduction, Legal Aspects of Patents, Filing of Patent

Applications, Rights from Patents, Infringement of Patents, Copyright and its Ownership,

Infringement of Copyright, Civil Remedies for Infringement, Regulation to Information-Introduction, Right to Information Act, 2005, Information Technology Act, 2000, Electronic Governance, Secure Electronic Records and Digital Signatures, Digital Signature Certificates, Cyber Regulations Appellate Tribunal, Offences, Limitations of the Information Technology Act.

Module 5 - Business Organizations and E-Governance:

Sole Traders, Partnerships: Companies: The Company's Act: Introduction, Formation of a Company, Memorandum of Association, Articles of Association, Prospectus, Shares, Directors, General Meetings and Proceedings, Auditor, Winding up.

E-Governance and role of engineers in E-Governance, Need for reformed engineering serving at the Union and State level, Role of I.T. professionals in Judiciary, Problem of Alienation and Secessionism in few states creating hurdles in Industrial development.

COURSE OBJECTIVE:

- To acquaint the students with legacies of constitutional development in India and help those to understand the most diversified legal document of India and philosophy behind it.
- To make students aware of the theoretical and functional aspects of the Indian Parliamentary System.
- To channelize students' thinking towards basic understanding of the legal concepts and its implications for engineers.
- To acquaint students with latest intellectual property rights and innovation environment with related regulatory framework.
- To make students learn about role of engineering in business organizations and e-governance.

COURSE OUTCOME: At the end of the course, learners should be able to-

- 1. Identify and explore the basic features and modalities about Indian constitution.
- 2. Differentiate and relate the functioning of Indian parliamentary system at the center and state level.
- 3. Differentiate different aspects of Indian Legal System and its related bodies.
- 4. Discover and apply different laws and regulations related to engineering practices.
- 5. Correlate role of engineers with different organizations and governance models

Pedagogy: Lecture, Problem based learning, Group discussions, Visual media, Films, Documentaries, Debate forums.

Suggested Readings:

- Brij Kishore Sharma: Introduction to the Indian Constitution, 8th Edition, PHI Learning Pvt. Ltd.
- Granville Austin: The Indian Constitution: Cornerstone of a Nation (Classic Reissue), Oxford University Press.
- S.G Subramanian: *Indian Constitution and Indian Polity*, 2nd Edition, Pearson Education 2020.
- Subhash C. Kashyap: *Our Constitution: An Introduction to India's Constitution and constitutional Law*, NBT, 2018.
- Madhav Khosla: *The Indian Constitution*, Oxford University Press.
- PM Bakshi: The Constitution of India, Latest Edition, Universal Law Publishing.
- V.K. Ahuja: Law Relating to Intellectual Property Rights (2007)
- Suresh T. Viswanathan: The Indian Cyber Laws, Bharat Law House, New Delhi-88
- P. Narayan: Intellectual Property Law, Eastern Law House, New Delhi
- Prabudh Ganguli: Gearing up for Patents: The Indian Scenario, Orient Longman.
- BL Wadehra: Patents, Trademarks, Designs and Geological Indications Universal Law Publishing LexisNexis.
- Intellectual Property Rights: Law and Practice, Module III by ICSI (only relevant sections)
- Executive programme study material Company Law, Module II, by ICSI (The Institute of Companies Secretaries of India) (Only relevant sections i.e., Study 1, 4 and 36).<u>https://www.icsi.edu/media/webmodules/publications/Company%20Law.pdf</u>
- Handbook on e-Governance Project Lifecycle, Department of Electronics & Information Technology, Government of India, <u>https://www.meity.gov.in/writereaddata/files/e-</u> <u>Governance_Project_Lifecycle_Participant_Handbook-5Day_CourseV1_20412.pdf</u>
- Companies Act, 2013 Key highlights and analysis by PWC. <u>https://www.pwc.in/assets/pdfs/publications/2013/companies-act-2013-key-highlightsand-analysis.pdf</u>

Referred Case Studies:

- Keshavanand Bharati V. State of Kerala, AIR 1973 SC 1461.
- Maneka Gandhi V. Union of India AIR, 1978 SC 597.
- S.R. Bammai V. Union of India, AIR 1994 SC 1918.
- Kuldip Nayyar V. Union of India, AIR 2006 SC312.
- A.D.M. Jabalpur V. ShivkantShakla, AIR 1976 SC1207.
- Remshwar Prasad V. Union of India, AIR 2006 SC980.
- Keshav Singh in re, AIR 1965 SC 745.

- Union of India V. Talsiram, AIR 1985 SC 1416.
- Atiabari Tea Estate Co.V. State of Assam, AIR 1961SC232.
- SBP & Co. Vs. Patel Engg. Ltd. 2005 (8) SCC 618.
- Krishna Bhagya Jala Nigam Ltd. Vs. G. Arischandra Reddy (2007) 2 SCC 720.
- Oil & Natural Gas Corporation Vs. Saw Pipes Ltd. 2003 (4) SCALE 92 185.

****** (Other relevant case studies can be consulted by the teacher as per the topic).

Prescribed Legislations:

- 1. Information Technology Act, 2000 with latest amendments.
- 2. RTI Act 2005 with latest amendments.
- 3. Information Technology Rules, 2000
- 4. Cyber Regulation Appellate Tribunal Rules, 2000

Suggested aid for Students and Pedagogic purpose

- RSTV debates on corporate law, IPR and patent issues
- NPTEL lectures on IPR and patent rights

Episodes of 10 -part mini TV series "Samvidhan: The Making of Constitution of India" by RSTV.

SYLLABUS

2 KNC502/ INDIAN TRADITION, CULTURE KNC602 AND SOCIETY

INDIAN TRADITIONS, CULTURAL AND SOCIETY

L: T:P: 2: 0:0

Module 1- Society State and Polity in India

State in Ancient India: Evolutionary Theory, Force Theory, Mystical Theory Contract Theory,

Stages of State Formation in Ancient India, Kingship, Council of Ministers Administration

Political Ideals in Ancient India Conditions' of the Welfare of Societies, The Seven Limbs of the State, Society in Ancient India, Purusārtha, Varnāshrama System, Āshrama or the Stages of Life, Marriage, Understanding Gender as a social category, The representation of Women in Historical traditions, Challenges faced by Women. Four-class Classification, Slavery.

Module 2- Indian Literature, Culture, Tradition, and Practices

Evolution of script and languages in India: Harappan Script and Brahmi Script. The Vedas, the Upanishads, the Ramayana and the Mahabharata, Puranas, Buddhist And Jain Literature in Pali,Prakrit And Sanskrit, Kautilya's Arthashastra, Famous Sanskrit Authors, Telugu Literature, Kannada Literature,Malayalam Literature ,Sangama Literature Northern Indian Languages &

Literature, Persian And Urdu ,Hindi Literature

Module 3- Indian Religion, Philosophy, and Practices

Pre-Vedic and Vedic Religion, Buddhism, Jainism, Six System Indian Philosophy, Shankaracharya, Various Philosophical Doctrines, Other Heterodox Sects, Bhakti Movement, Sufi movement, Socio religious reform movement of 19th century, Modern religious practices.

Module 4-Science, Management and Indian Knowledge System

Astronomy in India, Chemistry in India, Mathematics in India, Physics in India, Agriculture in

India, Medicine in India ,Metallurgy in India, Geography, Biology, Harappan Technologies, Water Management in India, Textile Technology in India ,Writing Technology in India Pyrotechnics in India Trade in Ancient India/,India's Dominance up to Pre-colonial Times

Module 5- Cultural Heritage and Performing Arts

Indian Architect, Engineering and Architecture in Ancient India, Sculptures, Seals, coins,

Pottery, Puppetry, Dance, Music, Theatre, drama, Painting, Martial Arts Traditions, Fairs and

Festivals, Current developments in Arts and Cultural, Indian's Cultural Contribution to the World. Indian Cinema

COURSE OBJECTIVES:

- The course aims at imparting basic principles of thought process, reasoning and inference to identify the roots and details of some of the contemporary issues faced by our nation and try to locate possible solutions to these challenges by digging deep into our past.
- To enable the students to understand the importance of our surroundings and encourage the students to contribute towards sustainable development.
- To sensitize students towards issues related to 'Indian' culture, tradition and its composite character.

- To make students aware of holistic life styles of Yogic-science and wisdom capsules in Sanskrit literature that are important in modern society with rapid technological advancements and societal disruptions.
- To acquaint students with Indian Knowledge System, Indian perspective of modern scientific world-view and basic principles of Yoga and holistic health care system.

COURSE OUTCOMES: Ability to understand, connect up and explain basics of Indian Traditional knowledge modern scientific perspective.

Suggested Pedagogy for Teachers

- Project based learning
- Case studies
- Group discussion
- Presentations

Suggested Text & Reference Books

- 1. V. Sivaramakrishna (Ed.), *Cultural Heritage of India-Course Material*, Bharatiya Vidya Bhavan, Mumbai, 5th Edition, 2014
- 2. S. Baliyan, Indian Art and Culture, Oxford University Press, India
- 3. Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan
- 4. Romila Thapar, Readings In Early Indian History Oxford University Press, India
- 5. Fritz of Capra, Tao of Physics
- 6. Fritz of Capra, The wave of Life
- 7. V N Jha (English Translation), *Tarkasangraha of Annam Bhatta*, Inernational Chinmay Foundation, Velliarnad, Amaku, am
- 8. Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkatta
- 9. GN Jha (Eng. Trans.) Ed. R N Jha, Yoga-darshanam with Vyasa Bhashya, Vidyanidhi Prakasham, Delhi, 2016
- 10. RN Jha, Science of Consciousness Psychotherapy and Yoga Practices, Vidyanidhi Prakasham, Delhi, 2016
- 11. P R Sharma (English translation), Shodashang Hridayam
- 12. Basham, A.L., The Wonder that was India (34th impression), New Delhi, Rupa & co
- 13. Sharma, R.S., Aspects of Political Ideas and Institutions in Ancient India(fourth edition), Delhi, Motilal Banarsidass,

B.TECH. (CSE/CS) SEVENTH SEMESTER (DETAILED SYLLABUS)

Artificial Intelligence								
	Course Outcome (CO) Bloom's Knowledge Leve							
At the end of course , the student will be able to understand								
CO 1	Understand the basics of the theory and practice of Artificial Intelligence as a discipline and about intelligent agents.							
CO 2	Understand search techniques and gaming theory.		K ₂ , K ₃					
CO 3	The student will learn to apply knowledge representation technic strategies to common AI applications.	ues and problem solving	K ₃ , K ₄					
CO 4	Student should be aware of techniques used for classification and	clustering.	K ₂ , K ₃					
CO 5	Student should aware of basics of pattern recognition and steps re	equired for it.	K2 , K4					

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	3	2	2	2	2	2	3	3	3
CO2	3	3	3	3	3	3	1		2	2	1	3	3	3
CO3	3	3	2	3	3	3	2		2	2	1	3	3	3
CO4	3	3	2	3	3	3	2	1	2	2	2	3	3	3
CO5	3	3	3	3	3	3	2	1	2	2	2	3	3	3

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	INTRODUCTION : Introduction–Definition – Future of Artificial Intelligence – Characteristics of Intelligent Agents– Typical Intelligent Agents – Problem Solving Approach to Typical AI problems.	08
II	PROBLEM SOLVING METHODS: Problem solving Methods – Search Strategies- Uninformed – Informed – Heuristics – Local Search Algorithms and Optimization Problems – Searching with Partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search – Game Playing – Optimal Decisions in Games – Alpha – Beta Pruning – Stochastic Games	08
111	KNOWLEDGE REPRESENTATION: First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-Categories and Objects – Events – Mental Events and Mental Objects – Reasoning Systems for Categories – Reasoning with Default Information	08

IV	SOFTWARE AGENTS: Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.	08
v	APPLICATIONS: AI applications – Language Models – Information Retrieval- Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Moving	08
Text be	ooks:	
1.	S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Third Edition, 2009.	
2.	I. Bratko, "Prolog: Programming for Artificial Intelligence", Fourth edition, Addison-Wesley Educational P 2011.	ublishers Inc.,
3.	M. Tim Jones, —Artificial Intelligence: A Systems Approach(Computer Science)I, Jones and Bartlett Publis Edition, 2008	shers, Inc.First
4.	Nils J. Nilsson, —The Quest for Artificial Intelligence, Cambridge University Press, 2009.	

- Nils J. Nilsson, The Quest for Artificial Intelligencell, Cambridge University Press, 2009.
 William F. Clocksin and Christopher S. Mellish, Programming in Prolog: Using the ISO Standardl, Fifth Edition, Springer, 2003.
- 6. Gerhard Weiss, --Multi Agent Systemsl, Second Edition, MIT Press, 2013.
- 7. David L. Poole and Alan K. Mackworth, —Artificial Intelligence: Foundations of Computational Agentsl, Cambridge University Press, 2010.

Natural Language Processing						
Course Outcome (CO)	Bloom's Knowledge Level (KL)					
At the end of course , the stu	ident will be able :					
	15					

CO 1	To learn the fundamentals of natural language processing	\mathbf{K}_1 , \mathbf{K}_2
CO 2	To understand the use of CFG and PCFG in NLP	\mathbf{K}_1 , \mathbf{K}_2
CO 3	To understand the role of semantics of sentences and pragmatic	\mathbf{K}_2
CO 4	To Introduce Speech Production And Related Parameters Of Speech.	\mathbf{K}_1 , \mathbf{K}_2
CO 5	To Show The Computation And Use Of Techniques Such As Short Time Fourier Transform, Linear Predictive Coefficients And Other Coefficients In The Analysis Of Speech.	K 3, K 4

PO						PO						
CO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1		2		1	1					
CO2	2		2	1	1		1					
CO3	2	1		2	1	1		1				
CO4	3	2	1	1		2	1					
CO5	1	1	3		2		1	1				

DETAILED SYLLABUS				
Unit	Торіс	Proposed Lecture		
Ι	INTRODUCTION: Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance WORD LEVEL ANALYSIS : Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.	08		
п	SYNTACTIC ANALYSIS: Context Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing – Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures.	08		
III	SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.	08		
IV	BASIC CONCEPTS of Speech Processing : Speech Fundamentals: Articulatory Phonetics – Production And Classification Of Speech Sounds; Acoustic Phonetics – Acoustics Of Speech Production; Review Of Digital Signal Processing Concepts; Short-Time Fourier Transform, FilterBank And LPC Methods.	08		

VSPEECH-ANALYSIS: Features, Feature Extraction And Pattern Comparison Techniques:
Speech Distortion Measures- Mathematical And Perceptual - Log-Spectral Distance, Cepstral
Distances, Weighted Cepstral Distances And Filtering, Likelihood Distortions, Spectral
Distortion Using A Warped Frequency Scale, LPC, PLP And MFCC Coefficients, Time
Alignment And Normalization - Dynamic Time Warping, Multiple Time - Alignment Paths.08SPEECH MODELING : Hidden Markov Models: Markov Processes, HMMs - Evaluation,
Optimal State Sequence - Viterbi Search, Baum-Welch Parameter Re-Estimation,
Implementation Issues.08

Text books:

- 1. Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.
- Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, OReilly Media, 2009.
- 3. Lawrence Rabiner And Biing-Hwang Juang, "Fundamentals Of Speech Recognition", Pearson Education, 2003.
- 4. Daniel Jurafsky And James H Martin, "Speech And Language Processing An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition", Pearson Education, 2002.
- 5. Frederick Jelinek, "Statistical Methods Of Speech Recognition", MIT Press, 1997.
- 6. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015 7. Richard M Reese, —Natural Language Processing with Java, OReilly Media, 2015.
- Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
- Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrieval, Oxford University Press, 2008.

High Performance Computing								
	Course Outcome (CO) Bloom's Knowledge L							
	At the end of course , the student will be able to understand							
CO 1	Able to understand the basic concept of Computer architecture and Modern Processor							
CO 2	Able to understand the basic concepts of access optimization and parallel computers							
CO 3	Able to describe different parallel processing platforms involved in achieving high performance computing	КЗ,К4						
CO 4	Develop efficient and high performance parallel programming.	К2 , КЗ						
CO 5	Able to learn parallel programming using message passing paradigm.	K2,K4						

PO				PO								
CO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1			1	1	1	1				
CO 2	2	1		2	1		1					
CO3	2			2	1	1		1				
CO4	1	2	3	2		1	1					
CO5	2	1		2	1	1		1				

	DETAILED SYLLABUS	3-0-0				
Unit	Торіс	Proposed Lecture				
1	Overview of Grid Computing Technology , History of Grid Computing, High Performance Computing, Cluster Computing. Peer-to-Peer Computing, Internet Computing, Grid Computing Model and Protocols, Types of Grids: Desktop Grids, Cluster Grids, Data Grids, High- Performance Grids, Applications and Architectures of High Performance Grids, High Performance Application Development Environment.	08				
II	Open Grid Services Architecture : Introduction, Requirements, Capabilities, Security Considerations, GLOBUS Toolkit	08				
III	Overview of Cluster Computing: Cluster Computer and its Architecture, Clusters Classifications, Components for Clusters, Cluster Middleware and SSI, Resource Management and Scheduling, Programming, Environments and Tools, Cluster Applications, Cluster Systems,					
IV	Beowulf Cluster : The Beowulf Model, Application Domains, Beowulf System Architecture, Software Practices, Parallel Programming with MPL, Parallel Virtual Machine (PVM).	08				
V	Overview of Cloud Computing: Types of Cloud, Cyber infrastructure, Service Oriented Architecture Cloud Computing Components: Infrastructure, Storage, Platform, Application, Services, Clients, Cloud Computing Architecture.					
Text bo 1. 20 3. 4. 5.	 Doks: Laurence T.Yang, Minyi Guo – High Performance Computing Paradigm and Infrastructure John Wile Ahmar Abbas, "Grid Computing: Practical Guide to Technology & Applications", Firewall Media, 004. Joshy Joseph and Craig Fellenstein, "Grid Computing" Pearson Education, 2004. Ian Foster, et al., "The Open Grid Services Architecture", Version 1.5 (GFD.80). Open Grid Forum, 2 RajkumarBuyya. High Performance Cluster Computing: Architectures and Systems. PrenticeHall Inc. 	2006. 11a, 1999.				
		15				

	Cryptography & Network Security							
	Course Outcome (CO) Bloom's Knowledge Level (KL)							
	At the end of course , the student will be able to understand							
CO 1	1 Classify the symmetric encryption techniques and Illustrate various Public key cryptographic techniques.							
CO 2	Understand security protocols for protecting data on networks and be able to digitally sign emails and files.							
CO 3	Understand vulnerability assessments and the weakn	ess of using passwords for authentication	К4					
CO 4	Be able to perform simple vulnerability assessments a	and password audits	КЗ					
CO 5	Summarize the intrusion detection and its solutions to	o overcome the attacks.	К2					

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1	3	1	3	3	1	1	1	2	3	3
CO2	3	3	2	2	3	3	3	1	1	1	1	2	3	3
CO3	3	3	2	2	3	3	3	2	1	1	1	2	3	3
CO4	3	1	1	1	3	1	3	1	1	1	1	2	3	3
CO5	3	3	2	2	3	3	3	2	1	1	1	2	3	3

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introduction to security attacks, services and mechanism, Classical encryption techniquessubstitution ciphers and transposition ciphers, cryptanalysis, steganography, Stream and block ciphers. Modern Block Ciphers: Block ciphers principles, Shannon's theory of confusion and diffusion, fiestal structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis, block cipher modes of operations, Triple DES	08
II	Introduction to group, field, finite field of the form GF(p), modular arithmetic, prime and relative prime numbers, Extended Euclidean Algorithm, Advanced Encryption Standard (AES) encryption and decryptionFermat's and Euler's theorem, Primarily testing, Chinese Remainder theorem, Discrete Logarithmic Problem, Principals of public key crypto systems, RSA algorithm, security of RSA	08
	Message Authentication Codes: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions, Secure hash algorithm (SHA) Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), proof of digital signature algorithm,	08
IV	Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure. Authentication Applications: Kerberos, Electronic mail security: pretty good privacy (PGP), S/MIME.	08
		15

v	IP Security: Architecture, Authentication header, Encapsulating security payloads, combining security associations, key management. Introduction to Secure Socket Layer, Secure electronic, transaction (SET) System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls						
Text books: 1. William Stallings, "Cryptography and Network Security: Principals and Practice",							
Pearso	on Education.						
2. Beh	rouz A. Frouzan: Cryptography and Network Security, McGraw Hill .						
3. C K	Shyamala, N Harini, Dr. T.R.Padmnabhan Cryptography and Security, Wiley						
4. Bru	ce Schiener, "Applied Cryptography". John Wiley & Sons						
5. Berr	nard Menezes," Network Security and Cryptography", Cengage Learning.						
6. Atu	IKahate, "Cryptography and Network Security", McGraw Hill						

	Course Outcome (CO)	
	At the end of course , the student will be able to understand	
CO 1	Be exposed to technology and business trends impacting mobile applications	K1 , K2
CO 2	Be competent with the characterization and architecture of mobile applications.	К3
CO 3	Be competent with understanding enterprise scale requirements of mobile applications.	K1 , K2
CO 4	Be competent with designing and developing mobile applications using one application development framework.	К3
CO 5	Be exposed to Android and iOS platforms to develop the mobile applications	K1 , K2
	DETAILED SYLLABUS	
Unit	Торіс	Proposed Lecture
Ι	INTRODUCTION: Introduction to mobile applications – Embedded systems - Market and business drivers for mobile applications – Publishing and delivery of mobile applications – Requirements gathering and validation for mobile applications	08
П	BASIC DESIGN: Introduction – Basics of embedded systems design – Embedded OS – Design constraints for mobile applications, both hardware and software related – Architecting mobile applications – User interfaces for mobile applications – touch events and gestures – Achieving quality constraints – performance, usability, security, availability and modifiability	08
III	ADVANCED DESIGN: Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.	08
IV	HNOLOGY I – ANDROID: Introduction – Establishing the development environment – oid architecture – Activities and views – Interacting with UI – Persisting data using SQLite – aging and deployment – Interaction with server side applications – Using Google Maps, GPS Wi-Fi – Integration with social media applications.	08
V	TECHNOLOGY II –iOS: Introduction to Objective C – iOS features – UI implementation – Touch frameworks – Data persistence using Core Data and SQLite – Location aware applications using Core Location and Map Kit – Integrating calendar and address book with social media application – Using Wi-Fi - iPhone marketplace. Swift: Introduction to Swift, features of swift	08
	 Text books: Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012 AnubhavPradhan, Anil V Despande Composing Mobile Apps,Learn ,explore,apply James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012 Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012 David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS Development: Exploring the iOS SDK", Apress, 2013. 	

	Software Testing									
Cours (Course Outcome (CO) Bloom's Knowledge Level (KL)									
		At the end of course , the student will be able to understand								
CO 1	Have an abi	lity to apply software testing knowledge and engineering methods.	K2 , K3							
CO 2	Have an ability to design and conduct a software test process for a software testing project. K3, K4									
CO 3	Have an ability to identify the needs of software test automation, and define and develop a K1, K2									
CO 4	Have an abi problems b methods.	lity understand and identify various software testing problems, and solve these by designing and selecting software test models, criteria, strategies, and	K1 , K2							
CO 5	Have basic as compone	understanding and knowledge of contemporary issues in software testing, such ant-based software testing problems.	K2							

РО				PO								
СО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	2	1	1						
CO2	1	3	3	2	1		1					
CO3		2	3		2	1		1				
CO4	1	2	3	3	3		1					
CO5		1	2	2	3	1		1				

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Review of Software Engineering: Overview of Software Evolution, SDLC, Testing Process, Terminologies in Testing: Error, Fault, Failure, Verification, Validation, Difference Between Verification and Validation, Test Cases, Testing Suite, Test, Oracles, Impracticality of Testing All Data; Impracticality of Testing AllPaths. Verification: Verification Methods, SRS Verification, Source Code Reviews, User Documentation Verification, Software, Project Audit, Tailoring Software Quality Assurance Program by Reviews, Walkthrough, Inspection and Configuration Audits	08
п	Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, Cause Effect Graphing Technique. Structural Testing: Control Flow Testing, Path Testing, Independent Paths, Generation of Graph from Program, Identification of Independent Paths, Cyclomatic Complexity, Data Flow Testing, Mutation Testing	08
III	Regression Testing: What is Regression Testing? Regression Test cases selection, Reducing the number of test cases, Code coverage prioritization technique. Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis	08

	IV	Software Testing Activities: Levels of Testing, Debugging, Testing techniques and their applicability, Exploratory Testing Automated Test Data Generation: Test Data, Approaches to test data generation, test data generation using genetic algorithm, Test Data Generation Tools, Software Testing Tools, and Software test Plan.	08
	V	Object Oriented Testing: Definition, Issues, Class Testing, Object Oriented Integration and System Testing. Testing Web Applications: Web Testing, User Interface Testing, Usability Testing, Security Testing, Performance Testing, Database testing, Post Deployment Testing	08
T	ext bo	ooks:	

- 1. Yogesh Singh, "Software Testing", Cambridge University Press, New York, 2012
- 2. K..K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International Publishers, New Delhi, 2003.
- 3. Roger S. Pressman, "Software Engineering A Practitioner's Approach", Fifth Edition, McGraw-Hill International Edition, New Delhi,2001.
- 4. Marc Roper, "Software Testing", McGraw-Hill Book Co., London, 1994.
- 5. M.C. Trivedi, Software Testing & Audit, Khanna Publishing House 6. Boris Beizer, "Software System Testing and Quality Assurance", Van Nostrand Reinhold, New York, 1984

	DISTRIBUTED SYSTEM								
	Course Outcome (CO) Bloom's Knowledge Level (KL)								
At the end of course , the student will be able to understand									
CO 1	To provide hardware and software issues in modern distributed systems.								
CO 2	² To get knowledge in distributed architecture, naming, synchronization, consistency and replication, fault tolerance, security, and distributed file systems.								
CO 3	To analyze the current popular distributed systems such as peer-to-peer	(P2P) systems will also be analyzed.	K4						
CO 4	To know about Shared Memory Techniques and have Sufficient knowl	edge about file access	K1						
CO 5	Have knowledge of Synchronization and Deadlock.		K1						

РО	РО											
СО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1		1						
CO2	1	2	1	1	1		1					
CO3	1	1	2	2	1	1	1					
CO4	2	2		2	1		1					
CO5	1	2	2	1	2	1						

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Characterization of Distributed Systems : Introduction, Examples of distributed Systems, Resource sharing and the Web Challenges. Architectural models, Fundamental Models. Theoretical Foundation for Distributed System: Limitation of Distributed system, absence of global clock, shared memory, Logical clocks ,Lamport's & vectors logical clocks. Concepts in Message Passing Systems: causal order, total order, total order, total order, Techniques for Message Ordering, Causal ordering of messages, global state, termination detection.	08
Ш	Distributed Mutual Exclusion: Classification of distributed mutual exclusion, requirement of mutual exclusion theorem, Token based and non token based algorithms, performance metric for distributed mutual exclusion algorithms. Distributed Deadlock Detection: system model, resource Vs communication deadlocks, deadlock prevention, avoidance, detection & resolution, centralized dead lock detection, distributed dead lock detection, path pushing algorithms, edge chasing algorithms.	08
ш	Agreement Protocols: Introduction, System models, classification of Agreement Problem, Byzantine agreement problem, Consensus problem, Interactive consistency Problem, Solution to Byzantine Agreement problem, Application of Agreement problem, Atomic Commit in Distributed Database system. Distributed Resource Management: Issues in distributed File Systems, Mechanism for building distributed file systems, Design issues in Distributed Shared Memory, Algorithm for Implementation of Distributed Shared Memory.	08
IV	Failure Recovery in Distributed Systems: Concepts in Backward and Forward recovery, Recovery in Concurrent systems, Obtaining consistent Checkpoints, Recovery in Distributed Database Systems. Fault Tolerance: Issues in Fault Tolerance, Commit Protocols, Voting protocols, Dynamic voting protocols	08

v	Transactions and Concurrency Control : Transactions, Nested transactions, Locks, Optimistic Concurrency control, Timestamp ordering, Comparison of methods for concurrency control. Distributed Transactions: Flat and nested distributed transactions, Atomic Commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. Replication: System model and group communication, Fault - tolerant services, highly available services, Transactions with replicated data.	08
Text	books:	
1	. Singhal & Shivaratri, "Advanced Concept in Operating Systems", McGraw Hill	
2	. Ramakrishna, Gehrke," Database Management Systems", McGraw Hill	
3	. Vijay K.Garg Elements of Distributed Computing, Wiley	
4	. Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", Pearson Education 5.	
	Tenanuanbaum, Steen," Distributed Systems", PHI	

	Deep Learning					
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)				
	At the end of course , the student will be able :					
CO 1	To present the mathematical, statistical and computational challenges of building neural networks	$1 K_1, K_2$				
CO 2	To study the concepts of deep learning	\mathbf{K}_1 , \mathbf{K}_2				
CO 3	To introduce dimensionality reduction techniques	K ₂				
CO 4	To enable the students to know deep learning techniques to support real-time applications	K ₂ , K				
CO 5	To examine the case studies of deep learning techniques	K 3, K 6				
	DETAILED SYLLABUS	3-0-0				
Unit	Торіс	Propose Lecture				
I	INTRODUCTION : Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates					
II	DEEP NETWORKS : History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semisupervised Learning					
III	DIMENTIONALITY REDUCTION 9 Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyper parameter optimization	08				
IV	OPTIMIZATION AND GENERALIZATION : Optimization in deep learning- Non-convex optimization for deep networks- Stochastic Optimization Generalization in neural networks-Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience					
V	CASE STUDY AND APPLICATIONS : Image net- Detection-Audio Wave Net-Natural Language Processing Word2Vec - Joint Detection-Bioinformatics- Face Recognition- Scene Understanding- Gathering Image Captions	08				
ext bo	oks:					
. Cosn	a Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.					
. Deng	& Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.					
. Ian G	oodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.					
. Mich	ael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.					
<u> </u>	a with MOOCS, https://anlineagurage.nntol.og.in/nog18_cg/1/nucriow					

	Service Oriented Architecture										
	Course Outcome (CO) Bloom's Knowledge Lev										
At the end of course , the student will be able :											
CO 1	Comprehend the need for SOA and its systematic evolution.	K1 , K2									
CO 2	Apply SOA technologies to enterprise domain.	K3									
CO 3	Design and analyze various SOA patterns and techniques.	K4									
CO 4	Compare and evaluate best strategies and practices of SOA.	K2									
CO 5	Understand the business case for SOA	K1									

Correlation between Outcomes (COs) and Program Outcomes (POs)

	Programme Outcome (POs)															
Course Outcor	e nes	PO1	PO2	PO3	PO4	Р 05	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
					-	-	-	-	-	-	-	-	-	-		
	C O 1	2	1	1	-	-	-	-	-	-	-	-	-	2	2	-
(C O2	2	1	1	-	-	-	-	-	-	-	-	-	2	2	-
	C O3	2	1	1	-	-	-	-	-	-	-	-	-	2	2	-
(C O 4	3	2	2	-	-	-	-	-	-	-	-	-	2	3	-
	C O 5	2	1	1										2	2	
						DETA	ILED	SYLLA	ABUS						3-	· 0-0
Unit								Торіс							Prop Lect	oosed ure
Ι	MSA Dim of Arch Ana SOA	A. Sen nension MSA. hitectu lysis a A Meth	rvice of ns of So Ent re for and Des nodolog	oriente OA, Co cerpris Enterpr sign (C sy for E	d Arch onceptu e-Wide rise-wie OOAD) Enterpri	nitectur al Moo e SO A de SOA Proces se	re and del of S A: Cor A, Ente ss, Serv	Micro SOA, S nsiderat erprise	oservice tandarc ions f SOA R ented	es arch ls and (for En deference Analysi	hitecture Guidelir terprise- ce Arch is and I	– Dr nes for S wide S itecture, Design (ivers fo SOA, Er SOA, S Object SOAD)	or SOA mergence trawman -orientee Process	, 1 1	08
 II Service-Oriented Applications: Considerations for Service-oriented Applications, Patterns for SOA, Pattern-based Architecture for Service-oriented Applications, Composite Application Programming Model. Service-Oriented Analysis and Design: Need for Models, Principles of Service Design, Nonfunctional Properties for Services, Design of Activity Services (or Business Services), Design of Data Services, Design of Client Services, Design of Business Process Services 																
ш	 III Technologies for SOA: Technologies for Service Enablement, Technologies for Service Integration, Technologies for Service Orchestration. SOA Governance and Implementation: Strategic Architecture Governance, Service Design-time Governance, Service Run-time Governance, Approach for Enterprise-wide SOA Implementation. 															

IV	 Big Data and SOA: Concepts, Big Data and its characteristics, Technologies for Big Data, Service-orientation for Big Data Solutions. Business Case for SOA: Stakeholder Objectives, Benefits of SOA, Cost Savings, Return on Investment (ROI), Build a Case for SOA
v	 SOA Best Practices: SOA Strategy – Best Practices, SOA Development – Best Practices, SOA Governance – Best Practices. EA and SOA for Business and IT Alignment: Enterprise Architecture, Need for Business and It Alignment, EA and SOA for Business and It Alignment
Text b	ooks:

- Shankar Kambhampaty; Service Oriented Architecture & Microservices Architecture: For Enterprise, Cloud, Big Data and Mobile; Wiley; 3rd Edition; 2018; ISBN: 9788126564064.
- 2. Icon Group International; The 2018-2023 World Outlook for Service-Oriented Architecture (SOA) Software and Services; ICON Group International; 1st Edition, 2017; ASIN: B06WGPN8YD.
- 3. Thomas Erl; Service Oriented Architecture Concepts Technology & Design; Pearson Education Limited; 2015; ISBN-13: 9788131714904.
- Guido Schmutz, Peter Welkenbach, Daniel Liebhart; Service Oriented Architecture An Integration Blueprint; Shroff Publishers & Distributors; 2010; ISBN-13: 9789350231081

	Quantum Computing				
	Course Outcome (CO)				
	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)		
	At the end of course , the student will be able to	ounderstand			
CO 1	CO 1 Distinguish problems of different computational complexity and explain why certain problems are rendered tractable by quantum computation with reference to the relevant concepts in quantum theory.				
CO 2	CO 2 Demonstrate an understanding of a quantum computing algorithm by simulating it on a classical computer, and state some of the practical challenges in building a quantum computer.				
CO 3	CO 3 Contribute to a medium-scale application program as part of a co-operative team, making use of appropriate collaborative development tools (such as version control systems).				
CO 4	CO 4 Produce code and documentation that is comprehensible to a group of different programmers and present the theoretical background and results of a project in written and verbal form.				
CO 5	Apply knowledge, skills, and understanding in executing a development, or investigation and in identifying and implementin	defined project of research, g relevant outcomes.	K3, K6		

PO		РО										
СО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1		1		1	1					
CO2	2	1		1	1	2		1				
CO3	1	2		2		1						
CO4	2	1	2	1		1	1					

	DETAILED SYLLABUS	3-0-0						
Unit	nit Topic							
Ι	Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computation, Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.	08						
П	Quantum Computation : Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database.	08						
III	Quantum Computers: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance	08						

IV	Quantum Information: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information.	08						
V	Quantum Error Correction: Introduction, Shor code, Theory of Quantum Error –Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation, Entropy and information – Shannon Entropy, Basic properties of Entropy, Von Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physical resource .	08						
Text b	poks:							
1.	Micheal A. Nielsen. &Issac L. Chiang, "Quantum Computation and Quantum Information", University Press, Fint South Asian edition, 2002.	, Cambridge						
2.	 Eleanor G. Rieffel, Wolfgang H. Polak, "Quantum Computing - A Gentle Introduction" (Scientific an Engineering Computation) Paperback – Import, Oct 2014 							
3.	Computing since Democritus by Scott Aaronson, Computer Science: An Introduction by N. David Yanofsky's and Mannucci, Quantum Computing for Computer Scientists.	Aermin 5.						

Mobile Computing									
Course Outcome (CO) Bloom's Knowledge Level									
At the end of course, the student will be able to understand									
CO 1	CO 1 Explain and discuss issues in mobile computing and illustrate overview of wireless telephony and channel allocation in cellular systems.								
CO 2	CO 2 Explore the concept of Wireless Networking and Wireless LAN.								
CO 3	CO 3 Analyse and comprehend Data management issues like data replication for mobile computers, adaptive clustering for mobile wireless networks and Disconnected operations.								
CO 4	CO 4 Identify Mobile computing Agents and state the issues pertaining to security and fault tolerance in mobile computing environment.								
CO 5	Compare and contrast various routing protocols and will identify an network systems using Adhoc networks.	nd interpret the performance of	K2						

PO	PO											
СО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	2	1	1	1	1	1	3	
CO2	3			3	3				2	1		
CO3	1	3	2	3		1		1				
CO4	2	1	2		3	3	3		1		2	
CO5	2	1	3	1			3		2		3	

DETAILED SYLLABUS					
Unit	Торіс	Proposed Lecture			
Ι	Introduction, issues in mobile computing, overview of wireless telephony: cellular concept, GSM: air-interface, channel structure, location management: HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, CDMA, GPRS.	08			
II	Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting, Mobile IP, WAP: Architecture, protocol stack, application environment, applications.	08			
III	Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations.	08			
IV	Mobile Agents computing, security and fault tolerance, transaction processing in mobile computing environment.	08			
V	Ad Hoc networks, localization, MAC issues, Routing protocols, global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Ad Hoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Ad Hoc Networks, applications.	08			

Text books:

- 1. J. Schiller, Mobile Communications, Addison Wesley.
- 2. A. Mehrotra, GSM System Engineering.
- 3. M. V. D. Heijden, M. Taylor, Understanding WAP, Artech House.
- 4. Charles Perkins, Mobile IP, Addison Wesley.
- 5. Charles Perkins, Ad hoc Networks, Addison Wesley.

	Internet of Things										
	Course Outcome (CO) Bloom's Knowledge Lev										
At the end of course, the student will be able to understand											
CO 1	CO 1 Demonstrate basic concepts, principles and challenges in IoT.										
CO 2	CO 2 Illustrate functioning of hardware devices and sensors used for IoT.										
CO 3	CO 3 Analyze network communication aspects and protocols used in IoT.										
CO 4	CO 4 Apply IoT for developing real life applications using Ardunio programming.										
CP 5	CP 5 To develop IoT infrastructure for popular applications										

РО	PO											
СО	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	3	1		2	1	1	1	1				
CO2	1	2	1	2	1		1				1	
CO3	2	1		2	1	1		1				
CO4	1	2	1	1		2	1					
CO5	2		1	2	1	2	1	1				

DETAILED SYLLABUS					
Unit	Торіс	Proposed Lecture			
I	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability	08			
II	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.	08			
III	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	08			
IV	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.	08			

v	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles,	08					
	tablets, Designing of smart street lights in smart city.						
Text be	books:						
1.	1. Olivier Hersent, David Boswarthick, Omar Elloumi "The Internet of Things key applications and protocols",						
	wiley						
2.	Jeeva Jose, Internet of Things, Khanna Publishing House						
3.	Michael Miller "The Internet of Things" by Pearson						
4.	Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016						
5.	ArshdeepBahga, Vijay Madisetti "Internet of Things (A hands on approach)" 1ST edition, VPI publications 2014						
6.	Adrian McEwen, Hakin Cassimally "Designing the Internet of Things" Wiley India						

Cloud Computing							
Course Outcome (CO) Bloom's Knowledge Leve							
	At the end of course , the student will be able to understand						
CO 1	CO 1 Describe architecture and underlying principles of cloud computing.						
CO 2	O 2 Explain need, types and tools of Virtualization for cloud.						
CO 3 Describe Services Oriented Architecture and various types of cloud services.							
CO 4 Explain Inter cloud resources management cloud storage services and their providers Assess security services and standards for cloud computing.							
CO 5	Analyze advanced cloud technologies.	K3, k					

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	2	2	1	2	2	3	3	3	3
CO2	3	3	3	2	2	2	2	1	2	2	3	3	3	3
CO3	3	3	2	2	2	2	2	1	2	2	3	3	3	3
CO4	3	3	2	2	3	3	2	1	2	2	3	3	3	3
CO5	3	3	3	3	3	2	2	1	2	2	3	3	3	3

	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Introduction To Cloud Computing: Definition of Cloud – Evolution of Cloud Computing – Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics – Elasticity in Cloud – On-demand Provisioning.	08
II	Cloud Enabling Technologies Service Oriented Architecture: REST and Systems of Systems – Web Services – Publish, Subscribe Model – Basics of Virtualization – Types of Virtualization – Implementation Levels of Virtualization – Virtualization Structures – Tools and Mechanisms – Virtualization of CPU – Memory – I/O Devices –Virtualization Support and Disaster Recovery.	08
	Cloud Architecture, Services And Storage: Layered Cloud Architecture Design – NIST Cloud Computing Reference Architecture – Public, Private and Hybrid Clouds – IaaS – PaaS – SaaS – Architectural Design Challenges – Cloud Storage – Storage-as-a-Service – Advantages of Cloud Storage – Cloud Storage Providers – S3.	08
IV	Resource Management And Security In Cloud: Inter Cloud Resource Management – Resource Provisioning and Resource Provisioning Methods – Global Exchange of Cloud Resources – Security Overview – Cloud Security Challenges – Software-as-a-Service Security – Security Governance – Virtual Machine Security – IAM – Security Standards.	08

v	Cloud Technologies And Advancements Hadoop: MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine — Open Stack – Federation in the Cloud – Four Levels of Federation – Federated Services and Applications – Future of Federation.	08				
Text b	poks:					
1.	Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publicherg, 2012					
2.	Rittinghouse, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and Secur	rity, CRC				
	Press, 2017.					
3.	Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, -Mastering Cloud Computing, Tata Mcgraw Hill,	2013.				
4.	Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing – A Practical Approach, Tata Mcgraw Hil	1, 2009.				
5.	George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Tran	isactional				
	Systems for EC2 and Beyond (Theory in Practice), O'Reilly, 2009.					

	Block chain Architecture Design							
	Course Outcome (CO) Bloom's Knowledge I							
	At the end of course , the student will be able	e to						
CO 1	1 Describe the basic understanding of Blockchain architecture along with its primitive.							
CO 2	CO 2 Explain the requirements for basic protocol along with scalability aspects.							
CO 3	Design and deploy the consensus process using frontend and backen	d.	K ₃ , K ₄					
CO 4	Apply Blockchain techniques for different use cases like Finance, Tr Government activities.	ade/Supply and	K4, K5					

PO		PO										
СО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	2	2	1	1					
CO2	3		2	1		1		1				
CO3	2	1	3	1	2	1	1					
CO4	1	1	2	2		1		1				
CO5	3	2		2	1		1	1				

	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Blockchain : Digital Money to Distributed Ledgers , Design Primitives: Protocols, Security, Consensus, Permissions, Privacy. Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,) Hashchain to Blockchain, Basic consensus mechanisms	08
II	Consensus: Requirements for the consensus protocols, Proof of Work (PoW), Scalability aspects of Blockchain consensus protocols Permissioned Blockchains:Design goals, Consensus protocols for Permissioned Blockchains	08
III	 Hyperledger Fabric (A): Decomposing the consensus process, Hyperledger fabric components, Chaincode Design and Implementation Hyperledger Fabric (B): Beyond Chaincode: fabric SDK and Front End (b) Hyperledger composer tool 	08
IV	Use case 1 : Blockchain in Financial Software and Systems (FSS): (i) Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility, trade/supply chain finance, invoice management discounting, etc	08

V	Use case 3 : Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping between government entities, (ii) public distribution system social welfare systems Blockchain Cryptography, Privacy and Security on Blockchain	08
Text b	ooks:	
1.	Mstering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos	
2.	Blockchain by Melanie Swa, O'Reilly	
3.	Hyperledger Fabric - https://www.hyperledger.org/projects/fabric	
4.	Zero to Blockchain - An IBM Redbooks course, by Bob Dill, David Smits -	
	https://www.redbooks.ibm.com/ Redbooks.nsf/RedbookAbstracts/crse0401.html	

Mini Project or Internship Assessment									
	Course Outcome (CO) Bloom's Knowledge Lev								
At the end of course , the student will be able to understand									
CO 1	O 1 Developing a technical artifact requiring new technical skills and effectively utilizing a new software tool to complete a task								
CO 2	Writing requirements documentation, Selecting appropriate technologies, identifying and creating appropriate test cases for systems.								
CO 3	Demonstrating understanding of professional customs & practices and working with professional standards.								
CO 4	Improving problem-solving, critical thinking skills and report writing.								
CO 5	Learning professional skills like exercising leadership, behaving ethically, listening effectively, participating a developing appropriate workplace attitudes.	behaving professionally, as a member of a team,	K2, K4						

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	3	2	1	3	3	3	3	2	1
CO2	3	3	3	2	3	3	2	1	3	3	3	3	3	2
CO3	3	3	3	3	3	3	2	1	3	3	3	3	1	2
CO4	3	3	2	2	3	3	2	1	3	3	3	3	2	3
CO5	3	3	2	2	3	3	2	1	3	3	3	3	2	3

Project								
	Course Outcome (CO) Bloom's Knowledge Lev							
At the end of course , the student will be able to understand								
CO 1	CO 1 Analyze and understand the real life problem and apply their knowledge to get programming solution.							
CO 2	Engage in the creative design process through the integration and application of diverse technical knowledge and expertise to meet customer needs and address social issues.							
CO 3	Use the various tools and techniques, coding practices solution to the problem.	s for developing real life	K_5 , K_6					
CO 4	Find out the errors in software solutions and establishin maintainable software applications	ng the process to design	K4 , K5					
CO 5	Write the report about what they are doing in project an working skills	d learning the team	K5, K6					

CO\PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	1	1	3	3	3	3	3	3
CO2	3	3	3	3	2	2	1	1	3	2	3	3	3	3
CO3	3	3	3	3	2	2	1	1	3	2	3	3	3	3
CO4	3	3	3	3	2	2	1	1	3	2	2	3	3	3
CO5	3	3	3	3	2	2	1	1	3	2	1	2	3	3

Note:

- 1. The Student shall choose an open Elective from the list in such a manner that he/she has not studied the same course in any form during the degree programme.
- 2. * It is mandatory that for these subjects (KOE069, KOE076, KOE087,KOE097 & KOE098) only Trained Faculty (who had done the FDP for these courses) will teach the courses.

Open Elective List II (VII Semester) 2021-22

Page 1

OPEN ELECTIVES II LIST 2021-22

B.Tech. VII Semester (2021-22)

OPEN ELECTIVE-II

FILTER DESIGN
BIOECONOMICS
MACHINE LEARNING
RENEWABLE ENERGY RESOURCES
OPERATIONS RESEARCH
VISION FOR HUMANE SOCIETY
DESIGN THINKING
SOIL AND WATER CONSERVATION ENGINEERING
INTRODUCTION TO WOMEN'S AND GENDER STUDIES

OPEN ELECTIVES II LIST 2021-22

	FILTER DESIGN	3L:0T:0P	3 Credits				
COURSE OBJECTIVE: Students undergoing this course are expected to:							

- 1. Understand about the characteristics of different filters.
- 2. Understand the concept of Approximation Theory.
- 3. Learn about the switched capacitor filter.

COURSE OUTCOME: After completion of the course student will be able to:

CO1	Choose an appropriate transform for the given signal.
CO2	Choose appropriate decimation and interpolation factors for high performance filters.
CO3	Model and design an AR system.
CO4	Implement filter algorithms on a given DSP processor platform.

Unit	Topics	Lecture
I	Introduction: Fundamentals, Types of filters and descriptive terminology, why we use Analog Filters, Circuit elements and scaling, Circuit simulation and modelling. Operational amplifiers: Op-amp models, Op-amp slew rate, Operational amplifiers with resistive feedback: Noninverting and Inverting, Analysing Op-amp circuits, Block diagrams and feedback, The Voltage follower, Addition and subtraction, Application of Op-amp resistor circuits.	<u>s</u> 8
II	First order filter: Bilinear transfer functions and frequency response – Bilinear transfer function and its parts, realization of passive elements, Bode plots, Active realization, The effect of A(s), cascade design.	8
III	Second order low pass and band pass filters: Design parameters, Second order circuit, frequency response of low pass and band pass circuits, Integrators and others biquads.	8
IV	Second order filters with arbitrary transmission zeros: By using summing, By voltage feed forward, cascade design revisited. Low pass filters with maximally flat magnitude: the ideal low pass filter, Butterworth response, Butterworth pole locations, low pass filter specifications, arbitrary transmission zeros.	8
V	Low pass filter with equal ripple (Chebyshev) magnitude response: The chebyshev polynomial ,The chebyshev magnitude response, Location of chebyshev poles, Comparison of maximally flat & equal–ripple responses, Chebyshev filter design Inverse chebyshev and cauer filters: Inverse chebyshev response, From specifications to pole and zero locations, Cauer magnitude response, Chebyshev rational functions, Cauer filter design.	8

Text Book:

1. Rolf. Schaumann, Haiqiao Xiao, Mac. E. Van Valkenburg, "Analog Filter Design", 2ndIndian Edition, Oxford University Press.

Reference Books:

- 1. J. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Second edition, Pearson.
- 2. T. Deliyannis, Yichuang Sun, J.K. Fidler, "Continuous-Time Active Filter Design", CRC Press.

OPEN ELECTIVES II LIST 2021-22

Page 3

		BIOECONOMICS	3L:0T:0P	3 Credits
OI Th un tha ba in CC	BJECT nis cour- iderstan at they used inc- terms DURSE 1. Str OURSE 3. Str &r 4. Str of	TVE: rse is designed with an objective to provide an adding of the basic knowledge of bioecomics to stu- can explore entrepreneurship opportunities in the lustry. This course also serves interdisciplinary into of sustainable bioeconomy COUTCOME: After completion of the course student w udents will be able to understand basic concept of portunities& regulations udents will be able to understand development and beconomy towards sustainable development udents will be able to understand Inter- and transdores esearch approaches udents will be able to explain biobased resources, biomass and biological knowledge to provide foor	dents so bio novation vill be able to: Bioeconomics, l innovation in lisciplinarity in ,value chain, ir d, feed, industr	, challenges, terms of bioeconomy novative use ial products
nit	Topics			Lectur
	Introd	uction: Fundamentals, Types of filters and descriptive	terminology, wł	ny we 8

Ι	Introduction: Fundamentals, Types of filters and descriptive terminology, why we use Analog Filters, Circuit elements and scaling, Circuit simulation and modelling. Operational amplifiers: Op-amp models, Op-amp slew rate, Operational amplifiers with resistive feedback: Noninverting and Inverting, Analysing Op-amp circuits, Block diagrams and feedback, The Voltage follower, Addition and subtraction, Application of Op-amp resistor circuits.				
II	Economic Growth, Development, and Innovation in terms of bioeconomy, Environmental				
	Economics and the Role of Government, Modelling and Tools Supporting the Transitionto aEconomy in sustainable				
	to a Economy in sustainable				
	Bioeconomy	nopment.			

III	Inter- and transdisciplinarity in Bioeconomy & research approaches, primary	8
	production, processing of biobased resources, Markets, Sustainability Management and	
	Entrepreneurshi in biobased products.	
IV	Biobased Resources and Value Chains, Processing of Biobased Resources, Markets, Sustainability Management and Entrepreneurship opportunity in biobased product. Food Security and Healthy Nutrition in the Context of the Bioeconomy, Use of Biomass for the Production of Fuel and Chemicals, The importance of Biotechnology for the Bioeconomy.	8
V	sustainable and innovative use of biomass and biological knowledge to provide food, feed, industrial products, bioenergy and ecological services, importance of bioeconomyrelated concepts in public, scientific, and political discourse, Dynamic Management of Fossil Fuel, Biofuel.	8

Text Book:

1. Principles of Bioeconomics by I. Sundar, Vedams eBooks (P) Ltd New Delhi, India

- 2. Bioeconomy:Shaping the Transition to a Sustainable, Biobased Economy by Iris Lewandowski, Springer.
- 3. Sociobiology and Bioeconomics by Koslowski, Peter

4. Modeling, Dynamics, Optimization and Bioeconomics I, by Pinto, Alberto Adrego, Zilberman,

David, Springer.
3L:0T:0P

3 Credits

MACHINE LEARNING				
	Course Outcome (CO)	Bloom's Knowled ge Level (KL)		
	At the end of course , the student will be able to			
	understand			
CO 1	Identify and understand the learning and hypothesis testing	К1,К2		
CO 2	Identify and apply learning methods of Decision Tree and artificial neural networks in real world classification	К2,КЗ		
CO 3	Able to understand the Bayes theorem and apply on the learning	К1,К, К4		
CO 4	Understand the theory of Computational learning and apply the concepts to handle engineering problems	J5,K3		
CO 5	Apply genetic algorithms to combinatorial optimization problems and recognize the feasibility of applying a softcomputing methodology for a particular problem	К2,К, Кб		

CO/PO MAPPING:

CO\PO Mapping	PO1	PO 2	PO3	PO4	PO 5	PO 6	PO 7	PO8	PO 9	PO10	PO 11	PO 12	PS O1	PS O2
CO1	3	2	2	1	2	2	3	2	3	2	3	2	3	3
CO2	2	1	1	3	1	1	2	1	2	2	2	3	3	3
CO3	2	3	3	1	2	2	1	2	1	1	3	3	3	2
CO4	2	2	3	1	2	1	1	2	2	2	2	3	1	3
CO5	2	1	2	3	1	1	1	2	1	2	3	2	3	3

DETAILED SYLLEBUS

Unit	Topics	Lectures
Ι	INTRODUCTION – Well defined learning problems, Designing a Learning	8
	System, Issues in Machine Learning; THE CONCEPT LEARNING	
	TASK - General-to-specific ordering of hypotheses, Find-S, List then	
	eliminate algorithm, Candidate elimination algorithm, Inductive bias.	

Open Elective List II (VII Semester) 2021-22

Π	DECISION TREE LEARNING - Decision tree learning algorithmInductive bias- Issues in Decision tree learning; ARTIFICIAL NEURAL NETWORKS – Perceptrons, Gradient descent and the Delta rule, Adaline, Multilayer networks, Derivation of backpropagation rule Backpropagation AlgorithmConvergence, Generalization.	8
III	Evaluating Hypotheses: Estimating Hypotheses Accuracy, Basics of sampling Theory, Comparing Learning Algorithms; Bayesian Learning: Bayes theorem, Concept learning, Bayes Optimal Classifier, Naïve Bayes classifier, Bayesian belief networks, EM algorithm.	8
IV	Computational Learning Theory: Sample Complexity for Finite Hypothesis spaces, Sample Complexity for Infinite Hypothesis spaces, The Mistake Bound Model of Learning; INSTANCE-BASED LEARNING – k-Nearest Neighbour Learning, Locally Weighted Regression, Radial basis function networks, Case-based learning.	8
V	Genetic Algorithms: an illustrative example, Hypothesis space search, Genetic Programming, Models of Evolution and Learning; Learning first order rules- sequential covering algorithms-General to specific beam search-FOIL; REINFORCEMENT LEARNING - The Learning Task, Q learning.	8

- 1. Tom M. Mitchell,-Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 2. Ethem Alpaydin,—Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.
- 3. Stephen Marsland, --Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 4. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer- Verlag.

RENEWABLE ENERGY RESOURCES

3L:0T:0P

3 Credits

Unit	Topics	Lectures
Ι	Introduction: Various non-conventional energy resources- Introduction, availability, classification, relative merits and demerits. Solar Cells: Theory of solar cells. Solar cell materials, solar cell array, solar cell power plant, limitations.	8
II	Solar Thermal Energy: Solar radiation, flat plate collectors and their materials, applications and performance, focussing of collectors and their materials, applications and performance; solar thermal power plants, thermal energystorage for solar heating and cooling, limitations.	8
III	Geothermal Energy: Resources of geothermal energy, thermodynamics of geo- thermal energy conversion-electrical conversion, non-electrical conversion, environmental considerations. Magneto-hydrodynamics (MHD): Principle of working of MHD Power plant, performance and limitations. Cells: Principle of working of various types of fuel cells and their working, performance and limitations.	8
IV	Thermo-electrical and thermionic Conversions: Principle of working, performance and limitations. Wind Energy: Wind power and its sources, site selection, criterion, momentum theory, classification of rotors, concentrations and augments, wind characteristics. Performance and limitations of energy conversion systems.	8
V	Bio-mass: Availability of bio-mass and its conversion theory. Ocean Thermal Energy Conversion (OTEC): Availability, theory and working principle, performance and limitations. Wave and Tidal Wave: Principle of working, performance and limitations. Waste Recycling Plants.	8

Text Book:

- 1. Raja etal, "Introduction to Non-Conventional Energy Resources" Scitech Publications.
- 2. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- 3. M.V.R. Koteswara Rao, "Energy Resources: Conventional & Non-Conventional" BSP Publications, 2006.
- 4. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.
- 5. C.S. Solanki, "Renewal Energy Technologies: A Practical Guide for Beginners" PHI Learning.
- 6. Peter Auer, "Advances in Energy System and Technology". Vol. 1 & II Edited by Academic Press.
- 7. Godfrey Boyle," Renewable Energy Power For A Sustainable Future", Oxford University Press.

Open Elective List II (VII Semester) 2021-22

OPERATIONS RESEARCH

3L:0T:0P

COURSE OUTCOMES (CO): After completion of the course, a student will be able to

COURSE	DESCRIPTION
OUTCOME	
(CO)	
CO1	Study the basics of OR and formulate the optimal solution / feasible solution related
	to various organizations of LPP.
CO2	Study the different method to find the solution of transportation and how to use
	them in computer application.
CO3	To understand how to assign the task for every person and determine the shortest
	path/minim cast in network problem.
CO4	Learn the concepts of job sequencing problems like n Jobs and Two machines et,
	and game theory.
CO5	Develop the concepts to design the CPM and PERT chart and learn the basics of
	Queuing model.

CO-PO MAPPING:

РО							PO					
СО	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		1	1		1					
CO2		2	1	2		1						
CO3	2	1		2	1		1					
CO4	1	1	2		1		1					
CO5	1		3	1	1	1						

DETAILED SYLLEBUS

Unit	Topics	Lectures
Ι	Introduction: Definition and scope of operations research (OR), OR model, solving the OR model, art of modelling, phases of OR study. Linear Programming: Two variable Linear Programming model and Graphical method of solution, Simplex method, Dual Simplex method, special cases of Linear Programming, duality, sensitivity analysis.	8
II	Transportation Problems: Types of transportation problems, mathematical models, transportation algorithms, Assignment: Allocation and assignment problems and models, processing of job through machines.	8
III	Network Techniques: Shortest path model, minimum spanning Tree Problem, Max-Flow problem and Min-cost problem. Project Management: Phases of project management, guidelines for network	8

Open Elective List II (VII Semester) 2021-22

OPEN ELECTIVES II LIST 2021-22

	construction, CPM and PERT	
IV	Theory of Games : Rectangular games, Minimax theorem, graphical solution of 2x n or mx2 games, game with mixed strategies, reduction to linear programming model. Quality Systems: Elements of Queuing model, generalized poisson queing model, single server models.	8
V	Inventory Control: Models of inventory, operation of inventory system, quantity discount. Replacement: Replacement models: Equipments that deteriorate with time, equipments that fail with time.	8

Text Book:

- 1. Wayne L. Winston,"Operations Research" Thomson Learning, 2003.
- 2. Hamdy H. Taha, "Operations Research-An Introduction" Pearson Education, 2003.
- 3. R. Panneer Seevam, "Operations Research" PHI Learning, 2008.
- 4. V.K.Khanna, "Total Quality Management" New Age International, 2008.

OPEN ELECTIVES II LIST 2021-22

VISION FOR HUMANE SOCIETY	3L:0T:0P	3 Credits
	- 1- 1 1 41- T	

Pre-requisites- for this subject only those faculty will teach these courses who had done the FDP for these courses.

Course Objectives:

- 1. To help the students to understand the importance and types of relationship with expressions.
- 2. To develop the competence to think about the conceptual framework of undivided society as well as universal human order.
- 3. To help the students to develop the exposure for transition from current state to the undivided society and universal human order. Course Methodology:
 - 1. The methodology of this course is exploration and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
 - 2. It is free from any dogma or set of do's and don'ts related to values.
 - 3. It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.
 - 4. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous selfevolution.
 - 5. This self-exploration also enables them to critically evaluate their pre- conditionings and present beliefs.

Unit	Topics	Lectures
Ι	Introduction to the course: Basic aspiration of a Human Being and program for its fulfilment, Need for family and relationship for a Human Being, Human- relationship and role of work in its fulfilment, Comprehensive Human Goal, Need for Undivided Society, Need for Universal Human Order, an appraisal of the Current State, Appraisal of Efforts in this Direction in Human History.	8
П	Understanding Human-Human Relationship & its fulfilment: Recognition of Human- Human Relationship, Recognition of feelings in relationship, Established Values and Expressed Values in Relationship, interrelatedness of feelings and their fulfilment, Expression of feelings, Types of relationship and their purpose, mutual evaluation in relationship, Meaning of justice in relationship, Justice leading to culture, civilization and Human Conduct.	8
III	Justice from family to world family order: Undivided Society as continuity and expanse of Justice in behaviour – family to world family order, continuity of culture and civilization, Universal Order on the basis of Undivided Society, Conceptual Framework for Universal human order, Universal Human Order as continuity and expanse of order in living: from family order to world family order, a conceptual framework for universal human order.	8

OPEN ELECTIVES II LIST 2021-22

IV	Program for Ensuring Undivided Society and Universal Human Order: Education –Sanskar, Health–Sanyam, Production-work, Exchange – storage, Justice- preservation.	8
V	Human Tradition: Scope and Steps of Universal Human Order, Human Tradition (Ex. Family order to world family order), Steps for transition from the current state, Possibilities of participation of students in this direction, Present efforts in this direction, Sum up.	8

Text books:

- 1. A Foundation Course in Human Values and Profession Ethics (Text Book and Teachers' Manual), R. R. Gaur, R. Asthana, G. P. Bagaria (2010), Excel Books, New Delhi.
- 2. Avartansheel Arthshastra, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 3. An Appeal by the Dalai Lama to the World: Ethics Are More Important Than Religion, Dalai Lama XIV, 2015.
- 4. Economy of Permanence (a quest for social order based on non-violence), J. C. Kumarappa (2010), Sarva-Seva-Sangh-Prakashan, Varansi, India.
- 1. Energy and Equity, Ivan Illich (1974), The Trinity Press, Worcester & Harper Collins, USA.
- 2. Human Society, Kingsley Davis, 1949.
- 3. Hind Swaraj or, Indian home rule Mohandas K. Gandhi, 1909.
- 4. Integral Humanism, Deendayal Upadhyaya, 1965.
- 5. Lohiya Ke Vichar, Lok Bharti , Rammanohar Lohiya, 2008.
- 6. Manav Vyavahar Darshan, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 7. Manaviya Sanvidhan, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 8. Samadhanatmak Bhautikvad, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 9. Small Is Beautiful: A Study of Economics as if People Mattered, E. F. Schumacher, 1973, Blond & Briggs, UK.
- 10. Slow is Beautiful, Cecile Andrews (http://www.newsociety.com/Books/S/Slow-is- Beautiful)
- 11. Sociology Themes and Perspectives, Harper Collins; EIGHT edition (2014), Martin Holborn and Peter Langley, 1980.
- 12. Samagra kranti: Jaya Prakash Narayan's philosophy of social change, Siddharth Publications Renu Sinha, 1996.
- 13. Science & Humanism towards a unified worldview, P. L. Dhar & R. R. Gaur (1990), Commonwealth Publishers, New Delhi
- 14. Vyavaharvadi Samajshastra, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 15. Vyavahatmak Janvad, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 16. The Communist Manifesto, Karl Marx, 1848.
- 17. Toward a True Kinship of Faiths: How the World's Religions Can Come Together Dalai Lama XIV, 2011

Reference Videos.

1. Kin school (30 minutes) 2. Technology (Solar City etc.).

Design Thinking	3L:0T:0P	3Credits
-----------------	----------	----------

Objective: The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for realtime problems

Unit	Topics	Lectures
I	Introduction to design thinking, traditional problem solving versus design thinking, history of design thinking, wicked problems. Innovation and creativity, the role of innovation and creativity in organizations, creativity in teams and their environments, design mindset. Introduction to elements and principles of design, 13 Musical Notes for Design Mindset, Examples of Great Design, Design Approaches across the world	8
П	Understanding humans as a combination of I (self) and body, basic physical needs up to actualization, prosperity, the gap between desires and actualization. Understanding culture in family society, institution, startup, socialization process. Ethical behavior: effects on self, society, understanding core values and feelings, negative sentiments and how to overcome them, definite human conduct: universal human goal, developing human consciousness in values, policy, and character. Understand stakeholders, techniques to empathize, identify key user problems. Empathy tools- Interviews, empathy maps, emotional mapping, immersion and observations, customer journey maps, and brainstorming, Classifying insights after Observations, Classifying Stakeholders, Do's & Don'ts for Brainstorming, Individual activity- 'Moccasin walk'	8
Ш	Defining the problem statement, creating personas, Point of View (POV) statements. Research- identifying drivers, information gathering, target groups, samples, and feedbacks. Idea Generation-basic design directions, Themes of Thinking, inspirations and references, brainstorming, inclusion, sketching and presenting ideas, idea evaluation, double diamond approach, analyze – four W's, 5 why's, "How Might We", Defining the problem using Ice-Cream Sticks, Metaphor & Random Association Technique, Mind-Map, ideation activity games - six thinking hats, million-dollar idea, introduction to visual collaboration and brainstorming tools - Mural, JamBoard	8
IV	Fundamental concepts of critical thinking, the difference between critical and ordinary thinking, characteristics of critical thinkers, critical thinking skills- linking ideas, structuring arguments, recognizing incongruences, five pillars of critical thinking, argumentation versus rhetoric, cognitive bias, tribalism, and politics. Case study on applying critical thinking on different scenarios.	8

V		8
	The argument, claim, and statement, identifying premises and conclusion, truth	
	and logic conditions, valid/invalid arguments, strong/weak arguments, deductive	
	argument, argument diagrams, logical reasoning, scientific reasoning, logical	
	fallacies, propositional logic, probability, and judgment, obstacles to critical	
	thinking. Group activity/role plays on evaluating arguments.	

Text Book:

- 1. Vijay Kumar, 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization, 2013, John Wiley and Sons Inc, New Jersey
- 2. BP Banerjee, Foundations of Ethics and Management, 2005, Excel Books
- 3. Gavin Ambrose and Paul Harris, Basics Design 08: Design Thinking, 2010, AVA Publishing SA
- 4. Roger L. Martin, Design of Business: Why Design Thinking is the Next Competitive Advantage, 2009, Harvard Business Press, Boston MA

Course Outcome: After successful completion of the course the students will be able to:

- 1. Develop a strong understanding of the design process and apply it in a variety of business settings
- 2. Analyze self, culture, teamwork to work in a multidisciplinary environment and exhibit empathetic behavior
- 3. Formulate specific problem statements of real time issues and generate innovative ideas using design tools
- 4. Apply critical thinking skills in order to arrive at the root cause from a set of likely causes
- 5. Demonstrate an enhanced ability to apply design thinking skills for evaluation of claims and arguments.

Soil and Water Conservation Engineering

3L:0T:0P 3Credits

Unit	Topics	Lectures
Ι	Definition and scope of soil conservation, cause of soil erosion, Mechanism of erosion, universal soil loss equation, soil erosion due to wind and its control, vegetation management, i.e., strip cropping, stubble mulching and other practices.	8
Π	Types of soil erosion due to water- sheet erosion, rill erosion, gully erosion, sediment transport in channels, sediment deposition in reservoirs. Methods of soil erosion control: bounding and terracing on agriculture land for gully control, bench terraces, vegetated water ways, chute spillways, drop inlet spillways, check dams, river training works.	8
III	Biological methods of soil erosion control, grass land management, forest management. Soil quality management, drainage works, reclamation of salt affected soils. Water conservation: water harvesting, rainfall- run off relation, water storage in ponds, lakes, reservoirs and aquifers, groundwater recharge through wells, check dams and storage works.	8
IV	Water losses: filtration, seepage and evaporation losses, pollution/ contamination of water quality due to agricultural practices i.e., fertilizers and pesticides, self purification of surface water, sources of agricultural water pollution, pollutant dispersion in ground water.	8
V	Need of planned utilization of water resources, economics of water resources utilization. Flood plain zones management, modifying the flood, reducing susceptibility to damage, reducing the impact of flooding.	8

Suggested reading:

- 1. Alam Singh Modern Geotechnical Engineering
- 2. K. R. Arora Soil Mechanics and foundation Engineering.
- 3. N. C. Brady Principles of Soil Sciences
- 4. B. C. Punmia Soil Mechanics and Foundation Engineering

KOE079	

Introduction to Women's and Gender Studies

3L:0T:0P

3Credits

Unit	Topics	Lectures
Ι	Women and Society: Understanding Sex- Gender, Gender shaping Institutions, Theories of Gender construction Understanding Sexism and Androcentrism, Understanding Patriarchy and Theories of Patriarchy, Private and Public dichotomy, Sexual Division of Work, Patriarchy practices in different institutions and Text Books.	8
Π	Feminist Theory: Rise of Feminism, Introduction to various stands of Feminism- Liberal Feminism, Radical Feminism, Marxist Feminism, Socialist Feminism, Cultural Feminism, Eco-Feminism, Post Colonial Feminism, Post Modern Feminism. Waves of Feminism.	8
Ш	Women's Movement: The socio-economic conditions of women during the age of Industrial revolution the Call for Women's Rights 1848, Women's rights movement 1848-1920, Historical Developments of Social Reform Movements in India , Women's groups and organizations, Women's Movement Movements for Uniform Civil code and ShahBano case, Dalit women and the question of double marginality.	8
IV	Gender Roles and Psychology of Sex: Difference Conceptualization of gender roles and gender role attitudes, Gender: Aggression, Achievement, Communication, Friendship and Romantic, Relationships Sex Differences in Mental Health Trauma relating to Rape, Taboo, Childhood Sexual Abuse, Domestic Violence, Sexual Harassment at Work Place, Educational Institutions, Eve Teasing etc.	8
V	Gender and Representation: Gender and Mass Media- Print Media, Gender and Mass Media-Electronic Media, Gender and Films, Advertisements, Mega Serials, Stereotyping and breaking the norms of women's roles Women's Representation in Literary Texts.	8

Suggested reading:

1.Basab iChakrabarti, Women's Studies: Various Aspects. UrbiPrakashani2014

2.Arvind Narrain. Queer: Despised Sexuality Law and Social Change. Book for Change. 2005 3.Chandra Talpade Mohanty, Feminism without Borders: Decolonizing Theory, Practicing Solidarity. Duke University Press.

4.Flavia Agnes. Law and Gender Inequality: The Politics of Women's Rights in India. Oxford University Press, 2001

5. Sonia Bathla, Women, Democracy and the Media: Cultural and Political Representations in the Indian Press, Sage, New Delhi, 1998.

Note:

- 1. The Student shall choose an open Elective from the list in such a manner that he/she has not studied the same course in any form during the degree programme.
- * It is mandatory that for these subjects (KOE069, KOE076, KOE087,KOE097 & KOE098) only Trained Faculty (who had done the FDP for these courses) will teach the courses.

HSMC & Open Elective List II (VII Semester)2021-22

HSMC & Open Elective List II (VII Semester)2021-22

Page 1

B.Tech. VII Semester (2021-22)

HUMANITIES, SCOCIAL SCIENCE AND MANAGEMENT COURSE (HSMC COURSE) HSMC1/HSMC2

RURAL DEVELOPMENT: ADMINISTRATION AND PLANNING
PROJECT MANAGEMENT & ENTREPRENEURSHIP

OPEN ELECTIVE-II

FILTER DESIGN
BIOECONOMICS
MACHINE LEARNING
 RENEWABLE ENERGY RESOURCES
OPERATIONS RESEARCH
VISION FOR HUMANE SOCIETY
DESIGN THINKING
SOIL AND WATER CONSERVATION ENGINEERING
INTRODUCTION TO WOMEN'S AND GENDER STUDIES

RURAL DEVELOPMENT: ADMINISTRATION	3L:0T:0P	3 Credits
AND PLANNING		

COURSE OUTCOME: After completion of the course student will be able to:

1. Students can understand the definitions, concepts and components of Rural Development 2. Students will know the importance, structure, significance, resources of Indian rural economy.

3. Students will have a clear idea about the area development programmes and its impact.

HSMC & Open Elective List II (VII Semester)2021-22

- 4. Students will be able to acquire knowledge about rural entrepreneurship.
- 5. Students will be able to understand about the using of different methods for human resource planning

Unit	Topics	Lectures
I	Rural Planning & Development: Concepts of Rural Development, Basic elements of rural Development, and Importance of Rural Development for creation of Sustainable Livelihoods, An overview of Policies and Programmes for Rural Development- Programmes in the agricultural sector, Programmes in the Social Security, Programmes in area of Social Sector.	8
Π	Rural Development Programmes: Sriniketan experiment, Gurgaon experiment, marthandam experiment, Baroda experiment, Firkha development scheme, Etawa pilot project, Nilokheri experiment, approaches to rural community development: Tagore, Gandhi etc	8
III	Panchayati Raj & Rural Administration: Administrative Structure: bureaucracy, structure of administration; Panchayati Raj Institutions Emergence and Growth of Panchayati Raj Institutions in India; People and Panchayati Raj; Financial Organizations in Panchayati Raj Institutions, Structure of rural finance, Government & Non-Government Organizations / Community Based Organizations, Concept of Self help group.	8
IV	Human Resource Development in Rural Sector: Need for Human Resource Development, Elements of Human Resource Development in Rural Sector Dimensions of HRD for rural development-Health, Education, Energy, Skill Development, Training, Nutritional Status access to basic amenities - Population composition.	8
V	Rural Industrialization and Entrepreneurship: Concept of R Industrialization, Gandhian approach to Rural Industrialization, Appropriate Technology for Rural Industries, Entrepreneurship and Rural IndustrializationProblems and diagnosis of Rural Entrepreneurship in India, with special reference to Women Entrepreneurship; Development of Small Entrepreneurs in India, need for and scope of entrepreneurship in Rural area.	8
Te	 xt Book: 1. Corporate Social Responsibility: An Ethical Approach - Mark S. Schwartz 2. Katar Singh: Rural Development in India – Theory History and Policy 3. TodaroM.P. Economic Development in III World war 4. Arora R.C – Integrated Rural Development in India 5. Dhandekar V.M and Rath N poverty in India 6. A.N.Agarwal and KundanaLal: Rural Economy of India 7. B.K.Prasad: Rural Development-Sarup& Son's Publications. 	

PROJECT MANAGEMENT & ENTREPRENEURSHIP

IP 3L:0T:0P

3 Credits

Unit	Topics	Lectures
I	Entrepreneurship: Entrepreneurship: need, scope , Entrepreneurial competencies & traits, Factors affecting entrepreneurial development, Entrepreneurial motivation (Mc Clellend's Achievement motivation theory), conceptual model of entrepreneurship , entrepreneur vs. intrapreneur; Classification of entrepreneurs; Entrepreneurial Development Programmes	8
II	Entrepreneurial Idea and Innovation: Introduction to Innovation, Entrepreneurial Idea Generation and Identifying Business Opportunities, Management skills for Entrepreneurs and managing for Value Creation, Creating and Sustaining Enterprising Model & Organizational Effectiveness	8
III	Project Management: Project management: meaning, scope & importance, role of project manager; project life-cycle Project appraisal: Preparation of a real time project feasibility report containing Technical appraisal,; Environmental appraisal, Market appraisal (including market survey for forecasting future demand and sales) and Managerial appraisal.	8
IV	Project Financing: Project cost estimation & working capital requirements, sources of funds, capital budgeting, Risk & uncertainty in project evaluation, preparation of projected financial statements viz. Projected balance sheet, projected income statement, projected funds & cash flow statements, Preparation of detailed project report, Project finance.	8
V	Social Entrepreneurship: Social Sector Perspectives and Social Entrepreneurship, Social Entrepreneurship Opportunities and Successful Models, Social Innovations and Sustainability, Marketing Management for Social Ventures, Risk Management in Social Enterprises, Legal Framework for Social Ventures.	8

Text Book:

1. Innovation and Entrepreneurship by Drucker, P.F.; Harper

and Row

2. Business, Entrepreneurship and Management: Rao,

V.S.P.;Vikas

3. Entrepreneurship: Roy Rajeev; OUP.

4. Text Book of Project Management: Gopalkrishnan, P. and Ramamoorthy, V.E.; McMillan

5. Project Management for Engineering, Business and Technology: Nicholas, J.M., and Steyn,

H.; PHI

6. Project Management: The Managerial Process: Gray, C.F., Larson, E.W. and Desai, G.V.; MGH

FILTER DESIGN	3L:0T:0P	3 Credits
	-	-

COURSE OBJECTIVE: Students undergoing this course are expected to:

- 1. Understand about the characteristics of different filters.
- 2. Understand the concept of Approximation Theory.
- 3. Learn about the switched capacitor filter.

COURSE OUTCOME: After completion of the course student will be able to:

CO1	Choose an appropriate transform for the given signal.
CO2	Choose appropriate decimation and interpolation factors for high performance filters.
CO3	Model and design an AR system.
CO4	Implement filter algorithms on a given DSP processor platform.

Unit	Topics	Lecture
		S
Ι	Introduction: Fundamentals, Types of filters and descriptive terminology, why we use Analog Filters, Circuit elements and scaling, Circuit simulation and modelling. Operational amplifiers: Op-amp models, Op-amp slew rate, Operational amplifiers with resistive feedback: Noninverting and Inverting, Analysing Op-amp circuits, Block diagrams and feedback, The Voltage follower, Addition and subtraction, Application of Op-amp resistor circuits.	8

Π	First order filter: Bilinear transfer functions and frequency response – Bilinear transfer function and its parts, realization of passive elements, Bode plots, Active realization, The effect of A(s), cascade design.	8
III	Second order low pass and band pass filters: Design parameters, Second order circuit, frequency response of low pass and band pass circuits, Integrators and others biquads.	8
IV	Second order filters with arbitrary transmission zeros: By using summing, By voltage feed forward, cascade design revisited. Low pass filters with maximally flat magnitude: the ideal low pass filter, Butterworth response, Butterworth pole locations, low pass filter specifications, arbitrary transmission zeros.	8
V	Low pass filter with equal ripple (Chebyshev) magnitude response: The chebyshev polynomial ,The chebyshev magnitude response, Location of chebyshev poles, Comparison of maximally flat & equal–ripple responses, Chebyshev filter design Inverse chebyshev and cauer filters: Inverse chebyshev response, From specifications to pole and zero locations, Cauer magnitude response, Chebyshev rational functions, Cauer filter design.	8

Text Book:

1. Rolf. Schaumann, Haiqiao Xiao, Mac. E. Van Valkenburg, "Analog Filter Design", 2ndIndian Edition, Oxford University Press.

Reference Books:

1. J. Michael Jacob, "Applications and Design with Analog Integrated Circuits", Second edition, Pearson.

2. T. Deliyannis, Yichuang Sun, J.K. Fidler, "Continuous-Time Active Filter Design", CRC Press.

HSMC & OPEN ELECTIVES II LIST 2021-22

		BIOECONO	OMICS	3L:0T:0P	3 Cre	dits
OBJECT This cou the basic entrepre serve in COURSI	FIVE: arse is desi c knowled neurship c terdiscipli E OUTCO1	igned with an obje ge of bioecomics t opportunities in the nary innovation in ME: After completio	ctive to provide an un to students so that the bio based industry. terms of sustainable on of the course student	nderstanding of y can explore This course also bioeconomy will be able to:		
1. St op 2. St bi 3. S_1 & 4. St or	tudents wi pportunitie tudents wi toeconomy tudents wi research a tudents wi f biomass	Ill be able to under es& regulations Ill be able to under y towards <u>sustainal</u> Ill be able to under pproaches Ill be able to explai and biological kno	stand basic concept of stand development and ble development rstand Inter- and trans in biobased resource weledge to provide fo	f Bioeconomics nd innovation in sdisciplinarity in s ,value chain, ir od, feed, industr	, challeng terms of bioecone inovative ial produ	ges, omy use cts
it Topics	S					Lectur es
Introd use A Opera with Blocl Appl	duction: Fu Analog Filte ational amp resistive fe k diagrams ication of (indamentals, Types overs, Circuit elements plifiers: Op-amp mo edback: Noninvertir and feedback, The V Op-amp resistor circu	of filters and descriptiv and scaling, Circuit sin dels, Op-amp slew rate ng and Inverting, Analy Voltage follower, Addi uits.	e terminology, wh mulation and mod , Operational amp sing Op-amp circ tion and subtraction	ny we lelling. blifiers uits, on,	8
Econo Envir Econo Gove to a Bioec	omic Grow onmental omics and t rnment conomy	rth, Development, ar	nd Innovation in terms , Modelling and Too Transition Economy in sustair 30pment.	of bioeconomy, ls Supporting the nable		8
produ and Entre	Inter- and oction, proc	transdisciplinarity i cessing of biobased r in biobased product	n Bioeconomy & resear resources, Markets, Sust	rch approaches, pr tainability Manag	rimary ement	8

IV	Biobased Resources and Value Chains, Processing of Biobased Resources, Markets, Sustainability Management and Entrepreneurship opportunity in biobased product. Food Security and Healthy Nutrition in the Context of the Bioeconomy, Use of Biomass for the Production of Fuel and Chemicals, The importance of Biotechnology for the Bioeconomy.	8
V	sustainable and innovative use of biomass and biological knowledge to provide food, feed, industrial products, bioenergy and ecological services, importance of bioeconomyrelated concepts in public, scientific, and political discourse, Dynamic Management of Fossil Fuel, Biofuel.	8
	Text Book:	

1. Principles of Bioeconomics by I. Sundar, Vedams eBooks (P) Ltd New Delhi, India

- 2. Bioeconomy:Shaping the Transition to a Sustainable, Biobased Economy by Iris Lewandowski, Springer.
- 3. Sociobiology and Bioeconomics by Koslowski, Peter
- Modeling, Dynamics, Optimization and Bioeconomics I, by Pinto, Alberto Adrego, Zilberman, David, Springer.

Page 6

MACHINE LEARNING

3L:0T:0P

3 Credits

Unit	Topics	Lectures
Ι	INTRODUCTION – Well defined learning problems, Designing a Learning System, Issues in Machine Learning; THE CONCEPT LEARNING TASK - General-to-specific ordering of hypotheses, Find-S, List then eliminate algorithm, Candidate elimination algorithm, Inductive bias.	8
П	DECISION TREE LEARNING - Decision tree learning algorithmInductive bias- Issues in Decision tree learning; ARTIFICIAL NEURAL NETWORKS – Perceptrons, Gradient descent and the Delta rule, Adaline, Multilayer networks, Derivation of backpropagation rule Backpropagation AlgorithmConvergence, Generalization.	8
III	Evaluating Hypotheses: Estimating Hypotheses Accuracy, Basics of sampling Theory, Comparing Learning Algorithms; Bayesian Learning: Bayes theorem, Concept learning, Bayes Optimal Classifier, Naïve Bayes classifier, Bayesian belief networks, EM algorithm.	8
IV	Computational Learning Theory: Sample Complexity for Finite Hypothesis spaces, Sample Complexity for Infinite Hypothesis spaces, The Mistake Bound Model of Learning; INSTANCE-BASED LEARNING – k-Nearest Neighbour Learning, Locally Weighted Regression, Radial basis function networks, Case-based learning.	8
V	Genetic Algorithms: an illustrative example, Hypothesis space search, Genetic Programming, Models of Evolution and Learning; Learning first order rules- sequential covering algorithms-General to specific beam search-FOIL; REINFORCEMENT LEARNING - The Learning Task, Q learning.	8

Text Book:

- 1. Tom M. Mitchell,—Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 2. Ethem Alpaydin,—Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.
- 3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 4. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag.

RENEWABLE ENERGY RESOURCES

3L:0T:0P

3 Credits

Unit	Topics	Lectures
Ι	Introduction: Various non-conventional energy resources- Introduction, availability, classification, relative merits and demerits. Solar Cells: Theory of solar cells. Solar cell materials, solar cell array, solar cell power plant, limitations.	8
II	Solar Thermal Energy: Solar radiation, flat plate collectors and their materials, applications and performance, focussing of collectors and their materials, applications and performance; solar thermal power plants, thermal energystorage for solar heating and cooling, limitations.	8
III	Geothermal Energy: Resources of geothermal energy, thermodynamics of geo- thermal energy conversion-electrical conversion, non-electrical conversion, environmental considerations. Magneto-hydrodynamics (MHD): Principle of working of MHD Power plant, performance and limitations. Cells: Principle of working of various types of fuel cells and their working, performance and limitations.	8
IV	Thermo-electrical and thermionic Conversions: Principle of working, performance and limitations. Wind Energy: Wind power and its sources, site selection, criterion, momentum theory, classification of rotors, concentrations and augments, wind characteristics. Performance and limitations of energy conversion systems.	8
V	Bio-mass: Availability of bio-mass and its conversion theory. Ocean Thermal Energy Conversion (OTEC): Availability, theory and working principle, performance and limitations. Wave and Tidal Wave: Principle of working, performance and limitations. Waste Recycling Plants.	8

Text Book:

- 1. Raja etal, "Introduction to Non-Conventional Energy Resources" Scitech Publications.
- 2. John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006.
- 3. M.V.R. Koteswara Rao, "Energy Resources: Conventional & Non-Conventional" BSP Publications, 2006.
- 4. D.S. Chauhan,"Non-conventional Energy Resources" New Age International.
- 5. C.S. Solanki, "Renewal Energy Technologies: A Practical Guide for Beginners" PHI Learning.
- 6. Peter Auer, "Advances in Energy System and Technology". Vol. 1 & II Edited by Academic Press.
- 7. Godfrey Boyle," Renewable Energy Power For A Sustainable Future", Oxford

University Press.

OPERATIONS RESEARCH

3L:0T:0P

3Credits

Unit	Topics	Lectures
Ι	Introduction: Definition and scope of operations research (OR), OR model, solving the OR model, art of modelling, phases of OR study. Linear Programming: Two variable Linear Programming model and Graphical method of solution, Simplex method, Dual Simplex method, special cases of Linear Programming, duality, sensitivity analysis.	8
II	Transportation Problems: Types of transportation problems, mathematical models, transportation algorithms, Assignment: Allocation and assignment problems and models, processing of job through machines.	8
III	Network Techniques: Shortest path model, minimum spanning Tree Problem, Max-Flow problem and Min-cost problem. Project Management: Phases of project management, guidelines for network construction, CPM and PERT	8
IV	Theory of Games : Rectangular games, Minimax theorem, graphical solution of 2x n or mx2 games, game with mixed strategies, reduction to linear programming model. Quality Systems: Elements of Queuing model, generalized poisson queing model, single server models.	8
V	Inventory Control: Models of inventory, operation of inventory system, quantity discount. Replacement: Replacement models: Equipments that deteriorate with time, equipments that fail with time.	8

Text Book:

- 1. Wayne L. Winston,"Operations Research" Thomson Learning, 2003.
- 2. Hamdy H. Taha, "Operations Research-An Introduction" Pearson Education, 2003.
- 3. R. Panneer Seevam, "Operations Research" PHI Learning, 2008.
- 4. V.K.Khanna, "Total Quality Management" New Age International, 2008.

VISION FOR HUMANE SOCIETY

3L:0T:0P

3 Credits

Pre-requisites- for this subject only those faculty will teach these courses who had done the FDP for these courses.

Course Objectives:

- 1. To help the students to understand the importance and types of relationship with expressions.
- 2. To develop the competence to think about the conceptual framework of undivided society as well as universal human order.
- 3. To help the students to develop the exposure for transition from current state to the undivided society and universal human order. Course Methodology:
 - 1. The methodology of this course is exploration and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
 - 2. It is free from any dogma or set of do's and don'ts related to values.
 - 3. It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.
 - 4. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous selfevolution.
 - 5. This self-exploration also enables them to critically evaluate their preconditionings and present beliefs.

Unit	Topics	Lectures
Ι	Introduction to the course: Basic aspiration of a Human Being and program for its fulfilment, Need for family and relationship for a Human Being, Human- relationship and role of work in its fulfilment, Comprehensive Human Goal, Need for Undivided Society, Need for Universal Human Order, an appraisal of the Current State, Appraisal of Efforts in this Direction in Human History.	8
П	Understanding Human-Human Relationship & its fulfilment: Recognition of Human- Human Relationship, Recognition of feelings in relationship, Established Values and Expressed Values in Relationship, interrelatedness of feelings and their fulfilment, Expression of feelings, Types of relationship and their purpose, mutual evaluation in relationship, Meaning of justice in relationship, Justice leading to culture, civilization and Human Conduct.	8

III	Justice from family to world family order: Undivided Society as continuity and expanse of Justice in behaviour – family to world family order, continuity of culture and civilization, Universal Order on the basis of Undivided Society, Conceptual Framework for Universal human order, Universal Human Order as continuity and expanse of order in living: from family order to world family order, a conceptual framework for universal human order.	8
IV	Program for Ensuring Undivided Society and Universal Human Order: Education – Sanskar, Health –Sanyam, Production-work, Exchange – storage, Justice- preservation.	8
V	Human Tradition: Scope and Steps of Universal Human Order, Human Tradition (Ex. Family order to world family order), Steps for transition from the current state, Possibilities of participation of students in this direction, Present efforts in this direction, Sum up.	8

Text books:

- 1. A Foundation Course in Human Values and Profession Ethics (Text Book and Teachers' Manual), R. R. Gaur, R. Asthana, G. P. Bagaria (2010), Excel Books, New Delhi.
- 2. Avartansheel Arthshastra, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 3. An Appeal by the Dalai Lama to the World: Ethics Are More Important Than Religion, Dalai Lama XIV, 2015.
- 4. Economy of Permanence (a quest for social order based on non-violence), J. C. Kumarappa (2010), Sarva-Seva-Sangh-Prakashan, Varansi, India.
- 1. Energy and Equity, Ivan Illich (1974), The Trinity Press, Worcester & Harper Collins, USA.
- 2. Human Society, Kingsley Davis, 1949.
- 3. Hind Swaraj or, Indian home rule Mohandas K. Gandhi, 1909.
- 4. Integral Humanism, Deendayal Upadhyaya, 1965.
- 5. Lohiya Ke Vichar, Lok Bharti , Rammanohar Lohiya, 2008.
- 6. Manav Vyavahar Darshan, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 7. Manaviya Sanvidhan, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 8. Samadhanatmak Bhautikvad, A. Nagraj, Divya Path Sansthan, Amarkantak, India
- 9. Small Is Beautiful: A Study of Economics as if People Mattered, E. F. Schumacher, 1973, Blond & Briggs, UK.
- 10. Slow is Beautiful, Cecile Andrews (http://www.newsociety.com/Books/S/Slow-is-Beautiful)
- 11. Sociology Themes and Perspectives, Harper Collins; EIGHT edition (2014), Martin Holborn and Peter Langley, 1980.
- 12. Samagra kranti: Jaya Prakash Narayan's philosophy of social change, Siddharth Publications Renu Sinha, 1996.
- 13. Science & Humanism towards a unified worldview, P. L. Dhar & R. R. Gaur (1990), Commonwealth Publishers, New Delhi

- 14. Vyavaharvadi Samajshastra, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 15. Vyavahatmak Janvad, A. Nagraj, Divya Path Sansthan, Amarkantak, India.
- 16. The Communist Manifesto, Karl Marx, 1848.
- 17. Toward a True Kinship of Faiths: How the World's Religions Can Come Together Dalai Lama XIV, 2011

Reference Videos.

1. Kin school (30 minutes) 2. Technology (Solar City etc.).

3. Natural Farming.

4. Economics of Happiness (1h 8m).

DESIGN THINKING 3L:0T:0P 3Credits

Course Objective: The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for realtime problems

Course Outcome: After successful completion of the course the students will be able to:

- 1. Develop a strong understanding of the design process and apply it in a variety of business settings
- 2. Analyze self, culture, teamwork to work in a multidisciplinary environment and exhibit empathetic behavior
- 3. Formulate specific problem statements of real time issues and generate innovative ideas using design tools
- 4. Apply critical thinking skills in order to arrive at the root cause from a set of likely causes
- 5. Demonstrate an enhanced ability to apply design thinking skills for evaluation of claims and arguments.

Unit	Topics	Lectures
Ι	Introduction to design thinking, traditional problem solving versus design thinking, history of design thinking, wicked problems. Innovation and creativity, the role of innovation and creativity in organizations, creativity in teams and their environments, design mindset. Introduction to elements and principles of design, 13 Musical Notes for Design Mindset, Examples of Great Design, Design Approaches across the world	8
Π	Understanding humans as a combination of I (self) and body, basic physical needs up to actualization, prosperity, the gap between desires and actualization. Understanding culture in family society, institution, startup, socialization process. Ethical behavior: effects on self, society, understanding core values and feelings, negative sentiments and how to overcome them, definite human conduct: universal human goal, developing human consciousness in values, policy, and character. Understand stakeholders, techniques to empathize, identify key user problems. Empathy tools- Interviews, empathy maps, emotional mapping, immersion and observations, customer journey maps, and brainstorming, Classifying insights after Observations, Classifying Stakeholders, Do's & Don'ts for Brainstorming, Individual activity- 'Moccasin walk'	8

III	Defining the problem statement, creating personas, Point of View (POV) statements. Research- identifying drivers, information gathering, target groups, samples, and feedbacks. Idea Generation-basic design directions, Themes of Thinking, inspirations and references, brainstorming, inclusion, sketching and presenting ideas, idea evaluation, double diamond approach,	8
	analyze – four W's, 5 why's, "How Might We", Defining the problem using Ice-Cream Sticks, Metaphor & Random Association Technique, Mind-Map, ideation activity games - six thinking hats, million-dollar idea, introduction to visual collaboration and brainstorming tools - Mural, JamBoard	
IV	Fundamental concepts of critical thinking, the difference between critical and ordinary thinking, characteristics of critical thinkers, critical thinking skills- linking ideas, structuring arguments, recognizing incongruences, five pillars of critical thinking, argumentation versus rhetoric, cognitive bias, tribalism, and politics. Case study on applying critical thinking on different scenarios.	8
V	The argument, claim, and statement, identifying premises and conclusion, truth and logic conditions, valid/invalid arguments, strong/weak arguments, deductive argument, argument diagrams, logical reasoning, scientific reasoning, logical fallacies, propositional logic, probability, and judgment, obstacles to critical thinking. Group activity/role plays on evaluating arguments.	8

- Vijay Kumar, 101 Design Methods: A Structured Approach for Driving Innovation in Your Organization, 2013, John Wiley and Sons Inc, New Jersey
 2.BP Banerjee, Foundations of Ethics and Management, 2005, Excel Books
- 3.Gavin Ambrose and Paul Harris, Basics Design 08: Design Thinking, 2010, AVA Publishing SA
- 4. Roger L. Martin, Design of Business: Why Design Thinking is the Next Competitive Advantage, 2009, Harvard Business Press, Boston MA

SOIL AND WATER CONSERVATION ENGINEERING

Unit	Topics	Lectures
Ι	Definition and scope of soil conservation, cause of soil erosion, Mechanism of erosion, universal soil loss equation, soil erosion due to wind and its control, vegetation management, i.e., strip cropping, stubble mulching and other practices.	8
П	Types of soil erosion due to water- sheet erosion, rill erosion, gully erosion, sediment transport in channels, sediment deposition in reservoirs. Methods of soil erosion control: bounding and terracing on agriculture land for gully control, bench terraces, vegetated water ways, chute spillways, drop inlet spillways, check dams, river training works.	8
Ш	Biological methods of soil erosion control, grass land management, forest management. Soil quality management, drainage works, reclamation of salt affected soils. Water conservation: water harvesting, rainfall- run off relation, water storage in ponds, lakes, reservoirs and aquifers, groundwater recharge through wells, check dams and storage works.	8
IV	Water losses: filtration, seepage and evaporation losses, pollution/ contamination of water quality due to agricultural practices i.e., fertilizers and pesticides, self purification of surface water, sources of agricultural water pollution, pollutant dispersion in ground water.	8
V	Need of planned utilization of water resources, economics of water resources utilization. Flood plain zones management, modifying the flood, reducing susceptibility to damage, reducing the impact of flooding.	8

Suggested reading:

- 1. Alam Singh Modern Geotechnical Engineering
- 2. K. R. Arora Soil Mechanics and foundation Engineering.
- 3. N. C. Brady Principles of Soil Sciences
- 4. B. C. Punmia Soil Mechanics and Foundation Engineering

INTRODUCTION TO WOMEN'S AND GENDER STUDIES

Unit	Topics	Lectures
Ι	Women and Society: Understanding Sex- Gender, Gender shaping Institutions, Theories of Gender construction Understanding Sexism and Androcentrism, Understanding Patriarchy and Theories of Patriarchy, Private and Public dichotomy, Sexual Division of Work, Patriarchy practices in different institutions and Text Books.	8
II	Feminist Theory: Rise of Feminism, Introduction to various stands of Feminism- Liberal Feminism, Radical Feminism, Marxist Feminism, Socialist Feminism, Cultural Feminism, Eco-Feminism, Post Colonial Feminism, Post Modern Feminism. Waves of Feminism.	8
III	Women's Movement: The socio-economic conditions of women during the age of Industrial revolution the Call for Women's Rights 1848, Women's rights movement 1848-1920, Historical Developments of Social Reform Movements in India , Women's groups and organizations, Women's Movement Movements for Uniform Civil code and ShahBano case, Dalit women and the question of double marginality.	8
IV	Gender Roles and Psychology of Sex: Difference Conceptualization of gender roles and gender role attitudes, Gender: Aggression, Achievement, Communication, Friendship and Romantic, Relationships Sex Differences in Mental Health Trauma relating to Rape, Taboo, Childhood Sexual Abuse, Domestic Violence, Sexual Harassment at Work Place, Educational Institutions, Eve Teasing etc.	8
V	Gender and Representation: Gender and Mass Media- Print Media, Gender and Mass Media-Electronic Media, Gender and Films, Advertisements, Mega Serials, Stereotyping and breaking the norms of women's roles Women's Representation in Literary Texts.	8

Suggested reading:

- 5. Basab iChakrabarti, Women's Studies: Various Aspects. UrbiPrakashani2014
- 6. Arvind Narrain. Queer: Despised Sexuality Law and Social Change. Book for Change. 2005
- 7. Chandra Talpade Mohanty, Feminism without Borders: Decolonizing Theory, Practicing Solidarity. Duke University Press.
- 8. Flavia Agnes. Law and Gender Inequality: The Politics of Women's Rights in India. Oxford University Press, 2001
- 9. Sonia Bathla, Women, Democracy and the Media: Cultural and Political Representations in the Indian Press, Sage, New Delhi, 1998.

Open Elective List (VIII Semester) 2021-22

III & IV OPEN ELECTIVES LIST

AS PER

AICTE MODEL CURRICULUM

[Effective from the Session: 2021-22]

Note:

- 1. The Student shall choose an open Elective from the list in such a manner that he/she has not studied the same course in any form during the degree programme.
- 2. ** It is mandatory that for these subjects** only Trained Faculty (who had done the FDP for these courses) will teach the courses.

Open Elective List (VIII Semester) 2021-22

B. TECH.

VIII Semester (2021-22)

OPEN ELECTIVE –III

FUNDAMENTALS OF DRONE TECHNOLOGY
CLOUD COMPUTING
BIO MEDICAL SIGNAL PROCESSING
ENTREPRENEURSHIP DEVELOPMENT
INTRODUCTION TO SMART GRID
QUALITY MANAGEMENT
INDUSTRIAL OPTIMIZATION TECHNIQUES
VIROLOGY
NATURAL LANGUAGE PROCESSING
**HUMAN VALUES IN MADHYASTH DARSHAN

Open Elective List (VIII Semester) 2021-22

Page 209

Page 1

OPEN ELECTIVE -- IV

ELECTRIC VEHICLES
AUTOMATION AND ROBOTICS
COMPUTERIZED PROCESS CONTROL
DATA WAREHOUSING & DATA MINING
DIGITAL AND SOCIAL MEDIA MARKETING
MODELING OF FIELD-EFFECT NANO DEVICES
MODELLING AND SIMULATION OF DYNAMIC SYSTEMS
BIG DATA
**HUMAN VALUES IN BUDDHA AND JAIN DARSHAN
**HUMAN VALUES IN VEDIC DARSANA

OPEN ELECTIVE –III

FUNDAMENTALS OF DRONE TECHNOLOGY
CLOUD COMPUTING
BIO MEDICAL SIGNAL PROCESSING
ENTREPRENEURSHIP DEVELOPMENT
INTRODUCTION TO SMART GRID
QUALITY MANAGEMENT
INDUSTRIAL OPTIMIZATION TECHNIQUES

Open Elective List (VIII Semester) 2021-22

VIROLOGY
NATURAL LANGUAGE PROCESSING
**HUMAN VALUES IN MADHYASTH DARSHAN

** It is mandatory that for these subjects (**) only Trained Faculty (who had done the FDP for these courses) will teach the courses.

FUNDAMENTALS OF DRONE TECHNOLOGY (UNMANNED AERIAL VEHICLES)

The course is an introduction to flight dynamics and control of aerial vehicles such as drones, UAVs and other such aircrafts, and the current development in the field. It is suitable for graduate and post graduate level with the following course objectives and outcomes.

Eligible Branch: Electronics & Communication, Instrumentation, Aeronautical, Electrical Engineering & Allied Branch, Mechanical, Computer Science & other allied relevant branches.

COURSE OBJECTIVES: The course should enable the students to:

- 1. To make the students to understand the basic concepts of UAV drone systems.
- 2. To introduce the stability and control of an aircraft

COURSE OUTCOMES: The student should able to:

- 1. Ability to design UAV drone system
- 2. To understand working of different types of engines and its area of applications.
- 3. To understand static and dynamic stability dynamic instability and control concepts
- 4. To know the loads taken by aircraft and type of construction and also construction materials in them.

	FUNDAMENTALS OF DRONE TECHNOLOGY	
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Drones: Introduction to Unmanned Aircraft Systems, History of UAV drones, classification of drones, System Composition, applications.	08

II	Design of UAV Drone Systems: Introduction to Design and Selection of the System, Aerodynamics and Airframe Configurations, Characteristics of Aircraft Types, Design Standards and Regulatory Aspects-India Specific, Design for Stealth.	08
III	Avionics Hardware of Drones: Autopilot, AGL-pressure sensorsservos-accelerometer –gyros-actuators- power supply-processor, integration, installation, configuration.	08
IV	Communication, Payloads and Controls: Payloads, Telemetry, Tracking, controls-PID feedback, radio control frequency range, modems, memory system, simulation, ground test-analysis-trouble shooting.	08
V	Navigation and Testing: Waypoints navigation, ground control software, System Ground Testing, System In-flight Testing, Future Prospects and Challenges	08

- 1. Reg Austin "Unmanned Aircraft Systems UAV design, development and deployment", Wiley, 2010.
- 2. Robert C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, Inc, 1998.
- 3. Kimon P. Valavanis, "Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy", Springer, 2007
- Paul G Fahlstrom, Thomas J Gleason, "Introduction to UAV Systems", UAV Systems, Inc, 1998
- 5. Dr. Armand J. Chaput, "Design of Unmanned Air Vehicle Systems", Lockheed Martin Aeronautics.

	CLOUD COMPUTING					
	Course Outcome (CO)					
	At the end of course , the student					
	will be able to understand					
CO1	Understand basic concept and evolution of Cloud Computing.	K1,K2				
CO2	Understand the importance of different Cloud enabling technologies and apply their application in real world.	K2,K3				
CO3	Understand and analyze multi layered cloud architecture design along with their applications and challenges.	K2,K4				
CO4	Understand and Apply Resource management and analyze security systems in cloud	K3,K4				
CO5	Analyze and Evaluate the components of open stack, Google Cloud platform, Hadoop, Virtual Box and Amazon web	K4,K5				

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	2	2	1	2	2	3	3	3	3
CO2	3	3	3	2	2	2	2	1	2	2	3	3	3	3
CO3	3	3	2	2	2	2	2	1	2	2	3	3	3	3
CO4	3	3	2	2	3	3	2	1	2	2	3	3	3	3
CO5	3	3	3	3	3	2	2	1	2	2	3	3	3	3

DETAILED SYLLABUS		3-1-0
Unit	Topic	Proposed Lecture
Ι	Introduction: Cloud Computing – Definition of Cloud – Evolution of Cloud Computing – Underlying Principles of Parallel and Distributed, History of Cloud Computing - Cloud Architecture - Types of Clouds - Business models around Clouds – Major Players in Cloud Computing- issues in Clouds - Eucalyptus - Nimbus - Open Nebula, CloudSim.	08
II	Cloud Services: Types of Cloud services: Software as a ServicePlatform as a Service –Infrastructure as a Service - Database as a Service - Monitoring as a Service –Communication as services. Service providers- Google, Amazon, Microsoft Azure, IBM, Sales force.	08

Open Elective List (VIII Semester) 2021-22

III	Collaborating Using Cloud Services: Email Communication over the Cloud - CRM Management – Project Management-Event Management - Task Management – Calendar - Schedules - Word Processing – Presentation – Spreadsheet - Databases – Desktop - Social Networks and Groupware.	08
IV	Virtualization for Cloud: Need for Virtualization – Pros and cons of Virtualization – Types of Virtualization –System VM, Process VM, Virtual Machine monitor – Virtual machine properties - Interpretation and binary translation, HLL VM - supervisors – Xen, KVM, VMware, Virtual Box, Hyper-V.	08
V	Security, Standards and Applications: Security in Clouds: Cloud security challenges – Software as a Service Security, Common Standards: The Open Cloud Consortium – The Distributed management Task Force – Standards for application Developers – Standards for Messaging – Standards for Security, End user access to cloud computing, Mobile Internet devices and the cloud. Hadoop – MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine	08

- 1. David E.Y. Sarna, "Implementing and Developing Cloud Application", CRC press 2011.
- 2. Lee Badger, Tim Grance, Robert Patt-Corner, Jeff Voas, NIST, Draft cloud computing synopsis and recommendation, May 2011.
- 3. Anthony T Velte, Toby J Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", McGrawHill 2010.
- 4. Haley Beard, "Best Practices for Managing and Measuring Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

BIOMEDICAL SIGNAL PROCESSING				
DETAILED SYLLABUS		3-1-0		
Unit	Торіс	Proposed Lecture		
I	Introduction to Bio-Medical Signals: Classification, Acquisition and Difficulties during Acquisition. Basics of Electrocardiography, Electroencephalography, Electromyography & electro-retinography Role of Computers in the Analysis, Processing, Monitoring & Control and image reconstruction in bio-medical field.	08		
II	ECG: Measurement of Amplitude and Time Intervals, QRS Detection (Different Methods), ST Segment Analysis, Removal of Baseline Wander and Power line Interferences, Arrhythmia Analysis, Portable Arrhythmia Monitors.	08		
III	Data Reduction: Turning Point algorithm, AZTEC Algorithm, Fan Algorithm, Huffman and Modified Huffman Coding, Run Length. Coding.	08		
IV	EEG: Neurological Signal Processing, EEG characteristic, linear prediction theory, Sleep EEG, Dynamics of Sleep/Wake transition. Study of pattern of brain waves, Epilepsy-Transition, detection and Estimation. EEG Analysis By Spectral Estimation: The Bt Method, Periodogram, Maximum Entropy Method & AR Method, Moving Average Method. The ARMA Methods, Maximum Likelihood Method.	08		
V	EP Estimation: by Signal Averaging, Adaptive Filtering:- General Structures of Adaptive filters, LMS Adaptive Filter, Adaptive Noise Cancelling, Wavelet Detection:- Introduction, Detection By Structural features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets.	08		

- 1. Willis J. Tomkin, "Biomedical Digital Signal Processing", PHI.
- 2. D. C. Reddy, "Biomedical Signal Processing", McGraw Hill
- 3. Crommwell Weibel and Pfeifer, "Biomedical Instrumentation and Measurement", PHI

Reference Books:

- 1. Arnon Cohen, "Biomedical Signal Processing (volume-I)", Licrc Press\
- 2. Rangaraj M. Rangayyan, "Biomedical Signal Analysis A Case Study Approach", John Wiley and Sons Inc.
- 3. John G. Webster, "Medical instrumentation Application and Design", John Wiley & Sons Inc

ENTREPRENEURSHIP DEVELOPMENT				
DETAILED SYLLABUS				
Unit	Торіс	Proposed Lecture		
Ι	Entrepreneurship- definition. growth of small scale industries in developing countries and their positions vis-a-vis large industries; role of small scale industries in the national economy; characteristics and types of small scale industries; demand based and resources based ancillaries and sub-control types. Government policy for small scale industry; stages in starting a small scale industry.	08		
II	Project identification- assessment of viability, formulation, evaluation, financing, field-study and collection of information, preparation of project report, demand analysis, material balance and output methods, benefit cost analysis, discounted cash flow, internal rate of return and net present value methods.	08		
Ш	Accountancy- Preparation of balance sheets and assessment of economic viability, decision making, expected costs, planning and production control, quality control, marketing, industrial relations, sales and purchases, advertisement, wages and incentive, inventory control, preparation of financial reports, accounts and stores studies.	08		
IV	Project Planning and control: The financial functions, cost of capital approach in project planning and control. Economic evaluation, risk analysis, capital expenditures, policies and practices in public enterprises. profit planning and programming, planning cash flow, capital expenditure and operations. control of financial flows, control and communication.	08		
V	Laws concerning entrepreneur viz, partnership laws, business ownership, sales and income taxes and workman compensation act. Role of various national and state agencies which render assistance to small scale industries.	08		

- 1. Forbat, John, "Entrepreneurship" New Age International.
- 2. Havinal, Veerbhadrappa, "Management and Entrepreneurship" New Age International
- 3. Joseph, L. Massod, "Essential of Management", Prentice Hall of India
| INTRODUCTION TO SMART GRID | | | |
|----------------------------|---|---------------------|--|
| | DETAILED SYLLABUS | 3-1-0 | |
| Unit | Торіс | Proposed
Lecture | |
| I | Introduction: Introduction to Smart Grid: Evolution of Electric Grid, Concept
of Smart Grid, Definitions, Need of Smart Grid, Functions of Smart Grid,
Opportunities & Barriers of Smart Grid, Difference between conventional &
smart grid, Concept of Resilient & Self Healing Grid, Present development &
International policies in Smart Grid. Case study of Smart Grid. CDM
opportunities in Smart Grid. | 08 | |
| II | Smart Grid Technologies: Introduction to Smart Meters, Real Time Prizing,
Smart Appliances, Automatic Meter Reading (AMR), Outage Management
System (OMS), Plug in Hybrid Electric Vehicles (PHEV), Vehicle to Grid,
Smart Sensors, Home & Building Automation. | 08 | |
| Ш | Smart Grid Technologies: Smart Substations, Substation Automation, Feeder
Automation, Geographic Information System (GIS), Intelligent Electronic
Devices (IED) & their application for monitoring & protection, Smart storage
like Battery, SMES, Pumped Hydro, Compressed Air Energy Storage, Wide
Area Measurement System (WAMS), Phase Measurement Unit (PMU),
PMUs application to monitoring & control of power system. | 08 | |
| IV | Microgrids and Distributed Energy Resources: Concept of microgrid, need & application of microgrid, formation of microgrid, Issues of interconnection, protection & control of microgrid, Plastic & Organic solar cells, thin flim solar cells, Variable speed wind generators, fuel cells, microturbines, Captive power plants, Integration of renewable energy sources. | 08 | |
| V | Power Quality Management in Smart Grid: Power Quality & EMC in Smart
Grid, Power Quality issues of Grid connected Renewable Energy Sources,
Power Quality Conditioners for Smart Grid, Web based Power Quality
monitoring | 08 | |

- 1. Ali Keyhani, Mohammad N. Marwali, Min Dai, "Integration of Green and Renewable Energy in Electric Power Systems", Wiley.
- 2. Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand Response", CRC Press.
- 3. Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid:
- 4. Technology and Applications", Wiley.
- 5. Jean Claude Sabonnadiere, NouredineHadjsaid, "Smart Grids", Wiley Blackwell 19.
- 6. Stuart Borlase, "Smart Grids (Power Engineering)", CRC Press.

Reference Books:

1. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability", Artech House Publishers July 2011.

- 2. James Northcote, Green, Robert G. Wilson "Control and Automation of Electric Power Distribution Systems (Power Engineering)", CRC Press.
- 3. MladenKezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert "SubstationAutomation (Power Electronice and Power Systems)", Springer
- 4. R.C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, "Electrical Power System Quality", 2nd Edition, McGraw Hill Publication.

QUALITY MANAGEMENT			
	DETAILED SYLLABUS	3-1-0	
Unit	Торіс	Proposed Lecture	
I	Quality Concepts: Evolution of Quality Control, concept change, TQM Modern concept, Quality concept in design, Review of design, Evolution of proto type. Control on Purchased Product: Procurement of various products, evaluation of supplies, capacity verification, Development of sources, procurement procedure. Manufacturing Quality: Methods and techniques for manufacture, inspection and control of product, quality in sales and services, guarantee, analysis of claims.	08	
П	Quality Management: Organization structure and design, quality function, decentralization, designing and fitting, organization for different type products and company, economics of quality value and contribution, quality cost, optimizing quality cost, seduction program. Human Factor in quality Attitude of top management, cooperation of groups, operators attitude, responsibility, causes of apparatus error and corrective methods.	08	
Ш	Control Charts, Theory of control charts, measurement range, construction and analysis of R charts, process capability study, use of control charts. Attributes of Control Chart, Defects, construction and analysis of charts, improvement by control chart, variable sample size, construction and analysis of C charts	08	
IV	Defects diagnosis and prevention defect study, identification and analysis of defects, correcting measure, factors affecting reliability, MTTF, calculation of reliability, building reliability in the product, evaluation of reliability, interpretation of test results, reliability control, maintainability, zero defects, quality circle.	08	
V	ISO-9000 and its concept of Quality Management, ISO 9000 series, Taguchi method, JIT in some details.	08	

- 1. Lt. Gen. H. Lal, "Total Quality Management", Eastern Limited, .
- 2. Greg Bounds, "Beyond Total Quality Management", McGraw Hill
- 3. Menon, H.G, "TQM in New Product manufacturing", McGraw Hill

	INDUSTRIAL OPTIMIZATION TECHNIQUES			
DETAILED SYLLABUS				
Unit	Торіс	Proposed Lecture		
Ι	I Linear Programming: Historical development of optimization, engineering application of optimization, formulation of design problems as a mathematical programing problem. Graphical method of solution, Simplex method, Dual Simplex method and its application in engineering. Transportation and Assignment: Introduction, Mathematical formulations, optimal solution of transportation model. Assignment problems: mathematical formulation, solution of Assignment models (Hungarian method), variation of the Assignment problem, the travelling sales man problem and their application in Engineering.	08		
П	Sequencing and Network Analysis: Introduction of sequencing, General assumptions, n Jobs through 2 machines, n jobs through 3 machines, n jobs through m machines, 2 jobs through m machines and their applications in Engineering. Network Analysis: Introduction, Network logic (Network or arrow diagram), Rules for drawing network diagrams, time analysis, forward and backward computation CPM and PERT, and their applications in Engineering.	08		
Ш	Theory of Games and Queueing Models: Introduction, 2 person zero sum games, Maximin and minimax principle, game with saddle point and without saddle point, Principle of dominance, Rectangular games, graphical solution of 2xn or mx2 games. Queuing model: Introduction, Application of Queuing model, generalized Poisson queuing model, single server models and multiple channel Queuing modeland their applications in Engineering.	08		
IV	Dynamic Programming and Simulation: Introduction Formulation of Dynamic Programming Problem, Dynamic Programming Algorithm, Forward recursions, Capital Budgeting Problem, Cargo-loading Problem. Solution of LPP by DPP Simulation: Introduction, definition and types of simulation, need for Simulation advantage and disadvantage, application of simulation, simulation procedure, Monte Carlo simulation and their applications in Engineering.	08		
V	Inventory Control and Replacement Models: Introduction, types of inventories, Inventory cost, Deterministic and probabilistic (nondeterministic) inventory models and their application in engineering. Replacement models: Introduction, definition, Replacement of items that deteriorate, Replacement of items that fail suddenly, Equipment Renewal Problem, Individual and Group Replacement policies & their applications in Engineering	08		
Text I	 Sooks: Singiresu S. Rao. "Engineering Optimization" Theory and Practice". New Ag International, New Delhi. 	ge		
	 R. Panneerselvam. "Operations Research ". Prentice- Hall of India, New Del Eliezer Naddor. "Inventory Systems". John Wiley & Sons, Inc. New York 	hi		
Refer	 Reference Books: 1. H.A. Taha: Operations Research – An Introduction, Macmillan Publishing Company, Inc., New York. 			

- 2. K. Swarup, P.K. Gupta, M. Mohan: "Operations Research", Sultan Chand and Sons, New Delhi.
- 3. P.K. Gupta, D.S. Hira: "Operations Research" An Introduction, S. Chand & Company Limited, New Delhi.
- 4. S.S. Rao: "Optimization Theory and Applications", Wiley Eastern Ltd., New

VIROLOGY

OBJECTIVE:

The objective of this course is to help the student learn molecular virology by general principles as opposed to describing each virus family. The rules for viral replication that all viruses follow are illustrated and discussed: while pointing out to the specific features of each virus, the course aims to reveal unity in the virus world rather than diversity. Host-pathogen interactions and examples of viral diseases will be discussed, with particular emphasis on the main principles of vaccine and antiviral drug development

	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
Ι	General Concepts: Virus history, Diversity, shapes, sizes and components of genomes. Isolation and purification of viruses and components.	08
Π	Consequences of virus infection to animals and human. Viral infection: affect on host macromolecules. Viral infection: establishment of the antiviral state. Viruses counter attack mechanisms. Viral diagnostic techniques: Rapid Antigen testing, RTPCR.	08
III	Classification of viruses and nomenclatures. +strand RNA viruses- Picorna viruses. Flavi viruses- West Nile virus and Dengue virus. Corona viruses-SARS pathogens. Small DNA viruses: parvo- and polyoma viruses. Large DNA viruses: Herpes-adeno-, and poxviruses. Miscellaneous viruses.	08
IV	-ve strand RNA viruses Paramyxo viruses. Orthomyxo viruses: Influenza pathogenesis and Bird flu. Rhabdo viruses: Rabies pathogenesis dsRNA viruses- Reo viruses. Retroviruses: structure, classification, life cycle; reverse transcription. Retroviruses: HIV, viral pathogenesis and AIDS.	08
V	Antivirals and viral vaccines Viral Vaccines Conventional vaccines- killed and attenuated, modern vaccinesrecombinant proteins, subunits, DNA vaccines, peptides, immunemodulators (cytokines), vaccine delivery and adjuvants, large scale manufacturing- QA/QC issues. Antivirals Interferons, designing and screening of antivirals, mechanism of action, antiviral libraries, antiretrovirals- mechanism of action and drug resistance. Modern approaches of virus control Anti-sense RNA, siRNA, ribozymes.	08

Reference Books:

- 1. Antiviral Agents, Vaccines and immunotherapies. Stephen K. Tyring. ISBN 9780367393748 CRC
- 2. Basic Virology Edward K Wanger. Blackwell Publication
- Fundamentals of molecular virology Acheson and Nicholas H,2011 4. Principles of Virology 2nd edition by S.J.Flint, L.W.Enquist, R.M.Krug, V.R. Racaniello, and A.M.Skalka ASM Press
- 5. Medical Virology 4th edition by David O.White and Frank J. Fenner. Academic Press.

NATURAL LANGUAGE PROCESSING

COURSE OBJECTIVES:

- To introduce the fundamental concept and techniques of Natural Language Processing
- To be able to map the appropriate techniques with the problem and solve real world problems.

COURSE OUTCOME(CO):

After completion of the course, a student will be able to

COURSEOUTCOME (CO)	DESCRIPTION
CO1	Basics of text components and text processing.
CO2	To differentiate among different techniques while considering different plus and minus of each technique.
CO3	To classify text, reduce Dimensionality, use different Topic ModellingApproaches and Algorithms.
CO4	Ability to understand the advanced processor architecture and concept of RTOS.
CO5	Analyze text data from different real-world situations.

CO-PO MAPPING:

PO			PC)								
CO	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2		1		1	1			1		
CO2	1	3		2		1			1			
CO3	1	2		1		1	1					
CO4	3		1	1			1					
CO5		3	1		2	1						

	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Natural Language Understanding: The study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background: An outline of English syntax.	08
Π	Introduction to semantics and knowledge representation, some applications like machine translation, database interface.	08
III	Grammars and Parsing: Grammars and sentence Structure, Top-Down and Bottom-Up Parsers, Transition Network Grammars, Top- Down Chart Parsing. Feature Systems and Augmented Grammars: Basic Feature system for English, Morphological Analysis and the Lexicon, Parsing with Features, Augmented Transition Networks.	08
IV	Grammars for Natural Language: Auxiliary Verbs and Verb Phrases, Movement Phenomenon in Language, Handling questions in Context-Free Grammars. Human preferences in Parsing, Encoding uncertainty, Deterministic Parser.	08
V	Ambiguity Resolution: Statistical Methods, Probabilistic Language Processing, Estimating Probabilities, Part-of Speech tagging, Obtaining Lexical Probabilities, Probabilistic Context-Free Grammars, Best First Parsing. Semantics and Logical Form, Word senses and Ambiguity, Encoding Ambiguity in Logical Form.	08

- 1. Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, "NLP: A Paninian Perspective", Prentice Hall, New Delhi.
- 2. James Allen, "Natural Language Understanding", Pearson Education.
- 3. D. Jurafsky, J. H. Martin, "Speech and Language Processing", Pearson Education.
- 4. L. M. Ivansca, S. C. Shapiro, "Natural Language Processing and Language Representation", AAAI Press, 2000.
- 5. T. Winograd, Language as a Cognitive Process, Addison-Wesley.

HUMAN VALUES IN MADHYASTH DARSHAN				
DETAILED SYLLABUS				
Unit	Торіс	Proposed Lecture		
	Catalogue Description: Madhyasth Darshan is a new emerging philosophy that describes the existential realities along with its implication in behaviour and work at the level of individual as well as society. This philosophy has been propounded by Shri A. Nagraj in seventies. It is to be kept in mind that Darshan means realisation which calls for developing the capacity to see the reality in oneself directly. So, any study of Darshan shall help develop this capacity in the students through proper steps of practices and shall not just provide the information.	08		
Ι	Module I: Introduction to Madhyasth Darshan and its Basics Need to study Madhyasth Darshan; introduction, basic formulations of the darshan; the complete expanse of study and the natural outcome of living according to the darshan.	08		
П	Module II: Submergence of Nature in Space The ever-present existence in the form of nature submerged in space; nature classified into two categories – material and consciousness, and four orders; the form, property, natural characteristic and selforganization of the four orders, General direction and process of evolution in the nature/ existence.	08		
III	Module III: Human Being as an indivisible part of Nature Human being as an indivisible part of nature; various types (five classes) of human beings; human being in the combination of self and body; purpose of self as realization, prosperity for the body; need of behavior and work for attaining the goals of realization and prosperity	08		
IV	Module IV: Fulfillment of human goal of realization and prosperity Following natural, social and psychological principles for actualizing the human goal; form of conducive society and order for such practices, study process- achieving realization through self-study and practice while living in such a society (social order).	08		
V	Module V: Human Conduct based on Madhyasth Darshan Description of such a realized self, continuity of happiness, peace, satisfaction and bliss through realization, conduct of a realized human being. Possibility of finding solutions to present day problems (such as inequality of rich and poor, man and woman etc.) in the light of it.			
1. 1. 2.	 Text Books: 1. Nagraj, A., "Manav Vyavahar Darshan", Jeevan Vidya Prakashan, 3rd edition, 2003 References: 1. Nagraj, A., "Vyavaharvadi Samajshastra", Jeevan Vidya Prakashan, 2nd edition, 2009. 2. Nagraj, A., "Avartanasheel Arthashastra", Jeevan Vidya Prakashan, 1st edition, 1998. 			

- 3. Class notes on "Human Values in Madhyasth Darshan" available on www.uhv.org.in
- 4. PPTs for "Human Values in Madhyasth Darshan" available on www.uhv.org.in
- 5. Video lectures on "Human Values in Madhyasth Darshan" on AKTU Digital Education

OPEN ELECTIVE -- IV

ELECTRIC VEHICLES
AUTOMATION AND ROBOTICS
COMPUTERIZED PROCESS CONTROL
DATA WAREHOUSING & DATA MINING
DIGITAL AND SOCIAL MEDIA MARKETING
MODELING OF FIELD-EFFECT NANO DEVICES
MODELLING AND SIMULATION OF DYNAMIC SYSTEMS
BIG DATA
**HUMAN VALUES IN BUDDHA AND JAIN DARSHAN
**HUMAN VALUES IN VEDIC DARSANA

** It is mandatory that for these subjects (**) only Trained Faculty (who had done the FDP for these courses) will teach the courses.

	ELECTRIC VEHICLES			
DETAILED SYLLABUS				
Unit	Торіс	Proposed Lecture		
Ι	Introduction of Electric Vehicles: Concept of Electrified transportation, Past, present status of electric vehicles, Recent developments and trends in electric vehicles, Comparison of EVs and IC Engine vehicles, Understanding electric vehicle components, Basic EV components and architecture, Autonomy and vehicle computing needs.	08		
П	Electric Motor Drives for EV applications: Concept of EV motors, Classification of EV motors, Comparison of Electric motors for EV applications, Recent EV motors, BLDC and SRM, axial flux motor. Introduction to power electronics converters, DC-DC converter, speed control of dc motor, BLDC motor driving schemes.	08		
Ш	EV Batteries and Battery Management System: EV batteries, Lead Acid batteries – Basics, Characteristics, Lithium batteries- Basics, Characteristics, Selection of battery for EVs, Smart battery pack design, Mechanical and reliability aspects of Li Ion packs, UN38 regulation familiarity, Cell balancing in Li Ion, Battery second life and usage in BESS (energy storage systems). BMS - Global price trends, volumetric and gravimetric efficiency trends	08		
IV	Charging system design technology for EV applications: Charging system design considerations, AC & DC Charging, Charging methods, On-board/Off-board chargers,Vehicle to charger communication system, OCPP familiarity cloud and device side, metrology, billing and authentication types, understand the computing needs in a charging system, Understand internal major block diagrams and subsystems of low and high power chargers. IEC61850 and 61851 familiarities, IEC61000, 60950/51, IEC62196 key highlights.	08		
V	EV Charging Facility Planning: Identification of EV demand, Impact of EV charging on power grid, Energy generation scheduling, different power sources, centralized charging schemes, Energy storage integration into micro-grid, Overview and applicability of AI for the EV ecosystem, design of V2G aggregator, case studies.	08		

Reference:

- 1. C.C.Chan, K.T.Chau. Modern Electric Vehicle Technology, Oxford University Press, NY 2001
- 2. M.Ehsani, Y.Gao, S.E.Gay, A.Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles Fundamentals, Theory and Design, CRC Press, 2004
- 3. James Larminie, John Lowry. Electric Vehicle Technology Explained. Wiley 2012
- 4. NPTEL Course on Electric Vehicles Part 1 by Dr. Amit Jain, IIT Delhi
- 5. Tests on Lithium-ion batteries. Available at: https://www.lithium-batterie-service.de/en/un-38.3-testseries
- 6. Handbook on Battery Energy Storage Systems- ADB, 2018 Addition Practical Hand (Lab works):
 - a. BLDC motor control experiment
 - b. E-rickshaw commercial BLDC and driver based live demo
 - c. Charge discharge characteristics of Li-Ion batteries and cells
 - d. BMS function SoC, SoH and cell balancing dem

AUTOMATION AND ROBOTICS			
	DETAILED SYLLABUS	3-1-0	
Unit	Торіс	Proposed Lecture	
I	Automation: Definition, Advantages, goals, types, need, laws and principles of Automation. Elements of Automation. Fluid power and its elements, application of fluid power, Pneumatics vs. Hydraulics, benefit and limitations of pneumatics and hydraulics systems, Role of Robotics in Industrial Automation.	08	
Π	Manufacturing Automation: Classification and type of automatic transfer machines; Automation in part handling and feeding, Analysis of automated flow lines, design of single model, multimode and mixed model production lines. Programmable Manufacturing Automation CNC machine tools, Machining centers, Programmable robots, Robot time estimation in manufacturing operations.	08	
Ш	Robotics: Definition, Classification of Robots - Geometric classification and Control classification, Laws of Robotics, Robot Components, Coordinate Systems, Power Source. Robot anatomy, configuration of robots, joint notation schemes, work volume, manipulator kinematics, position representation, forward and reverse transformations, homogeneous transformations in robot kinematics, D-H notations, kinematics equations, introduction to robot arm dynamics.	08	
IV	Robot Drives and Power Transmission Systems: Robot drive mechanisms: Hydraulic/Electric/Pneumatics, servo & stepper motor drives, Mechanical transmission method: Gear transmission, Belt drives, Rollers, chains, Links, Linear to Rotary motion conversion, Rotary-to-Linear motion conversion, Rack and Pinion drives, Lead screws, Ball Bearings. Robot end Effectors: Classification of End effectors – active and passive grippers, Tools as end effectors, Drive system for rippers. Mechanical, vacuum and magnetic grippers. Gripper force analysis and gripper design.	08	
V	Robot Simulation: Methods of robot programming, Simulation concept, Off- line programming, advantages of offline programming. Robot Applications: Robot applications in manufacturing-Material transfer and machine loading/unloading, Processing operations like Welding & painting, Assembly operations, Inspection automation, Limitation of usage of robots in processing operation. Robot cell design and control, Robot cell layouts-Multiple robots & Machine interference.	08	

- 1 An Introduction to Robot Technology, by Coifet Chirroza, Kogan Page.
- 2 Robotics for Engineers, by Y. Koren, McGraw Hill.
- 3 Robotic: Control, Sensing, Vision and Intelligence, by Fu, McGraw Hill.
- 4 Introduction to Industrial Robotics, by Nagrajan, Pearson India.
- 5 Robotics, by J.J. Craig, Addison-Wesley.
- 6 Industrial Robots, by Groover, McGraw Hill.

Robotic Engineering - An Integrated Approach : Richard D. Klafter Thomas A.

COMPUTERIZED PROCESS CONTROL					
DETAILED SYLLABUS					
Unit	Торіс	Proposed Lecture			
Ι	Basics of Computer-Aided Process Control: Role of computers in process control, Elements of a computer aided Process control System, Classification of a Computer–Aided Process Control System Computer Aided Process– control Architecture: Centralized Control Systems, Distributed control Systems, Hierarchical Computer control Systems. Economics of Computer- Aided Process control. Benefits of using Computers in a Process control. Process related Interfaces: Analog Interfaces, Digital Interfaces, Pulse Interfaces, Standard Interfaces.	08			
Π	Industrial communication System: Communication Networking, Industrial communication Systems, Data Transfer Techniques, Computer Aided Process control software, Types of Computer control Process Software, Real Time Operating System.	08			
III	Process Modelling for computerized Process control: Process model, Physical model, Control Model, Process modelling. Modelling Procedure: Goals Definition, Information Preparation, Model Formulation, Solution Finding, Results Analysis, Model Validation.	08			
IV	Advanced Strategies For Computerised Process control: Cascade Control, Predictive control, Adaptive Control, Inferential control, Intelligent Control, Statistical control.	08			
V	Examples of Computerized Process Control: Electric Oven Temperature Control, Reheat Furnace Temperature control, Thickness and Flatness control System for metal Rolling, Computer-Aided control of Electric Power Generation Plant.	08			

1. S. K. Singh, "Computer Aided Process control", PHI.

Reference Books:

- 1. C. L. Smith, "Digital computer Process Control", Ident Educational Publishers.
- 2. C. D. Johnson, "Process Control Instrumentation Technology", PHI.
- 3. Krishan Kant, "Computer Based Industrial Control"
- 4. Pradeep B. Deshpande & Raymond H. Ash, "Element of Computer Process Control with Advance Control Applications", Instrument Society of America, 1981.
- 5. C. M. Houpis & G. B. Lamond, "Digital Control System Theory", McGraw Hill.

DATA WAREHOUSING & DATA MINING

DETAILED SYLLABUS

3-1-0

Unit	Торіс	Proposed Lecture
Ι	Data Warehousing: Overview, Definition, Data Warehousing Components, Building a Data Warehouse, Warehouse Database, Mapping the Data Warehouse to a Multiprocessor Architecture, Difference between Database System and Data Warehouse, Multi Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept.	08
П	Data Warehouse Process and Technology: Warehousing Strategy, Warehouse /management and Support Processes, Warehouse Planning and Implementation, Hardware and Operating Systems for Data Warehousing, Client/Server Computing Model & Data Warehousing. Parallel Processors & Cluster Systems, Distributed DBMS implementations, Warehousing Software, Warehouse Schema Design	08
III	Data Mining: Overview, Motivation, Definition & Functionalities, Data Processing, Form of Data Pre-processing, Data Cleaning: Missing Values, Noisy Data, (Binning, Clustering, Regression, Computer and Human inspection), Inconsistent Data, Data Integration and Transformation. Data Reduction:-Data Cube Aggregation, Dimensionality reduction, Data Compression, Numerosity Reduction, Discretization and Concept hierarchy generation, Decision Tree	08
IV	Classification: Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases, Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms. Clustering: Introduction, Similarity and Distance Measures, Hierarchical and Partitional Algorithms. Hierarchical Clustering- CURE and Chameleon. Density Based Methods DBSCAN, OPTICS. Grid Based Methods- STING, CLIQUE. Model Based Method – Statistical Approach, Association rules: Introduction, Large Item sets, Basic Algorithms, Parallel and Distributed Algorithms, Neural Network approach.	08
V	Data Visualization and Overall Perspective: Aggregation, Historical information, Query Facility, OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data Warehouse. Warehousing applications and Recent Trends: Types of Warehousing Applications, Web Mining, Spatial Mining and Temporal Mining.	08

Suggested Readings:

1. Alex Berson, Stephen J. Smith "Data Warehousing, Data-Mining & OLAP", McGrawHil.

2. Mark Humphries, Michael W. Hawkins, Michelle C. Dy, "Data Warehousing: Architecture and Implementation", Pearson Education..

- 3. I. Singh, "Data Mining and Warehousing", Khanna Publishing House.
- 4. Margaret H. Dunham, S. Sridhar,"Data Mining:Introductory and Advanced Topics" Pearson Education.

DIGITAL AND SOCIAL MEDIA MARKETING					
DETAILED SYLLABUS					
Unit	Торіс	Proposed Lecture			
Ι	Introduction to Digital Marketing: The new digital world - trends that are driving shifts from traditional marketing practices to digital marketing practices, the modern digital consumer and new consumer's digital journey. Marketing strategies for the digital world-latest practices.	08			
Π	Social Media Marketing -Introduction to Blogging, Create a blog post for your project. Include headline, imagery, links and post, Content Planning and writing. Introduction to Face book, Twitter, Google +, LinkedIn, YouTube, Instagram and Pinterest; their channel advertising and campaigns.	08			
III	Acquiring & Engaging Users through Digital Channels: Understanding the relationship between content and branding and its impact on sales, search engine marketing, mobile marketing, video marketing, and social-media marketing. Marketing gamification, Online campaign management; using marketing analytic tools to segment, target and position; overview of search engine optimization (SEO).	08			
IV	Designing Organization for Digital Success: Digital transformation, digital leadership principles, online P.R. and reputation management. ROI of digital strategies, how digital marketing is adding value to business, and evaluating cost effectiveness of digital strategies.	08			
V	Digital Innovation and Trends: The contemporary digital revolution, digital transformation framework; security and privatization issues with digital marketing Understanding trends in digital marketing – Indian and global context, online communities and co-creation.	08			

- 1. Moutsy Maiti: Internet Mareting, Oxford University Press India
- 2. Vandana, Ahuja; Digital Marketing, Oxford University Press India (November, 2015).
- 3. Eric Greenberg, and Kates, Alexander; Strategic Digital Marketing: Top Digital Experts
- 4. Share the Formula for Tangible Returns on Your Marketing Investment; McGraw-Hill Professional.
- 5. Ryan, Damian; Understanding Digital Marketing: marketing strategies for engaging the digital generation; Kogan Page.
- 6. Tracy L. Tuten & Michael R. Solomon: Social Media Marketing (Sage Publication)

MODELING OF FIELD-EFFECT NANO DEVICES					
DETAILED SYLLABUS					
Unit	Торіс	Proposed Lecture			
Ι	MOSFET scaling, short channel effects - channel engineering - source/drain engineering - high k dielectric - copper interconnects - strain engineering, SOI MOSFET, multigate transistors – single gate – double gate – triple gate – surround gate, quantum effects – volume inversion – mobility – threshold voltage – inter subband scattering, multigate technology – mobility – gate stack.	08			
Π	MOS Electrostatics $-1D - 2D$ MOS Electrostatics, MOSFET CurrentVoltage Characteristics $-$ CMOS Technology $-$ Ultimate limits, double gate MOS system $-$ gate voltage effect $-$ semiconductor thickness effect $-$ asymmetry effect $-$ oxide thickness effect $-$ electron tunnel current $-$ two dimensional confinement, scattering $-$ mobility.	08			
III	Silicon nanowire MOSFETs – Evaluvation of I-V characteristics – The I-V characteristics for nondegenerate carrier statistics – The I-V characteristics for degenerate carrier statistics – Carbon nanotube – Band structure of carbon nanotube – Band structure of graphene – Physical structure of nanotube – Band structure of nanotube – Carbon nanotube FETs – Carbon nanotube MOSFETs – Schottky barrier carbon nanotube FETs – Electronic conduction in molecules – General model for ballistic nano transistors – MOSFETs with 0D, 1D, and 2D channels – Molecular transistors – Single electron charging – Single electron transistors.	08			
IV	Radiation effects in SOI MOSFETs, total ionizing dose effects – single-gate SOI – multi-gate devices, single event effect, scaling effects.	08			
V	Digital circuits – impact of device performance on digital circuits – leakage performance trade off – multi VT devices and circuits – SRAM design, analog circuit design – transconductance - intrinsic gain – flicker noise – self heating –band gap voltage reference – operational amplifier – comparator designs, mixed signal – successive approximation DAC, RF circuits.	08			

- 1. J P Colinge, "FINFETs and other multi-gate transistors", Springer Series on integrated circuits and systems, 2008
- 2. Mark Lundstrom, Jing Guo, "Nanoscale Transistors: Device Physics, Modeling and Simulation", Springer, 2006
- 3. M S Lundstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University Press, Cambridge UK, 2000.

MODELLING AND SIMULATION OF DYNAMIC SYSTEMS					
DETAILED SYLLABUS					
Unit	Торіс	Proposed Lecture			
Ι	Introduction to modeling and simulation: Introduction to modeling, Examples of models, modeling of dynamic system, Introduction to simulation, MATLAB as a simulation tool, Bond graph modeling, causality, generation of system equations.	08			
II	Bond graph modeling of dynamic system: Methods of drawing bond graph model- Mechanical systems & Electrical systems, some basic system models- Mechanical systems, Thermal systems, hydraulic systems, pneumatic systems and electrical systems.	08			
Ш	System models of combined systems: Linearity and non linearity in systems combined rotary and translatory system, electro mechanical system, hydro-mechanical system.	08			
IV	Dynamic Response and System Transfer Function: Dynamic response of 1 st order system and 2 nd order system, performance measures for 2 nd order system, system transfer function, transfer function of 1 st and 2 nd order system Block diagram algebra, signal flow diagram, state variable formulation, frequency response and bode plots.	08			
V	Simulation and simulation applications: Simulation using SIMULINK, examples of simulation problems- simple and the compound pendulum, planner mechanisms, validation and verification of the simulation model, parameter estimation methods, system identifications, introduction to optimization.	08			

	BIG DATA	
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Big Data: Types of digital data, history of Big Data innovation, introduction to Big Data platform, drivers for Big Data, Big Data architecture and characteristics, 5 Vs of Big Data, Big Data technology components, Big Data importance and applications, Big Data features – security, compliance, auditing and protection, Big Data privacy and ethics, Big Data Analytics, Challenges of conventional systems, intelligent data analysis, nature of data, analytic processes and tools, analysis vs reporting, modern data analytic tools.	08
Ш	Hadoop: History of Hadoop, Apache Hadoop, the Hadoop Distributed File System, components of Hadoop, data format, analyzing data with Hadoop, scaling out, Hadoop streaming, Hadoop pipes, Hadoop Echo System. Map-Reduce: Map-Reduce framework and basics, how Map Reduce works, developing a Map Reduce application, unit tests with MR unit, test data and local tests, anatomy of a Map Reduce job run, failures, job scheduling, shuffle and sort, task execution, Map Reduce types, input formats, output formats, Map Reduce features, Real-world Map Reduce	08
III	HDFS (Hadoop Distributed File System): Design of HDFS, HDFS concepts, benefits and challenges, file sizes, block sizes and block abstraction in HDFS, data replication, how does HDFS store, read, and write files, Java interfaces to HDFS, command line interface, Hadoop file system interfaces, data flow, data ingest with Flume and Scoop, Hadoop archives, Hadoop I/O: Compression, serialization, Avro and file-based data structures. Hadoop Environment: Setting up a Hadoop cluster, cluster specification, cluster setup and installation, Hadoop configuration, security in Hadoop, administering Hadoop, HDFS monitoring & maintenance, Hadoop benchmarks, Hadoop in the cloud	08
IV	 Hadoop Eco System and YARN: Hadoop ecosystem components, schedulers, fair and capacity, Hadoop 2.0 New Features – Name Node high availability, HDFS federation, MRv2, YARN, Running MRv1 in YARN. NoSQL Databases: Introduction to NoSQL MongoDB: Introduction, data types, creating, updating and deleing documents, querying, introduction to indexing, capped collections Spark: Installing spark, spark applications, jobs, stages and tasks, Resilient Distributed Databases, anatomy of a Spark job run, Spark on YARN SCALA: Introduction, classes and objects, basic types and operators, built-in control structures, functions and closures, inheritance. 	08
V	 Hadoop Eco System Frameworks: Applications on Big Data using Pig, Hive and HBase Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases, Grunt, Pig Latin, User Defined Functions, Data Processing operators, Hive - Apache Hive architecture and installation, Hive shell, Hive services, Hive metastore, comparison with traditional databases, HiveQL, tables, querying data and user defined functions, sorting and aggregating, Map Reduce scripts, joins & subqueries. HBase – Hbase concepts, clients, example, Hbase vs RDBMS, advanced usage, schema design, advance indexing, Zookeeper – how it helps in monitoring a cluster, how to build applications with Zookeeper. IBM Big Data strategy, introduction to Infosphere, BigInsights and Big Sheets, introduction to Big SQL. 	08

Suggested Readings:

- 1. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley.
- 2. Big-Data Black Book, DT Editorial Services, Wiley.
- 3. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill.
- 4. Thomas Erl, Wajid Khattak, Paul Buhler, "Big Data Fundamentals: Concepts, Drivers and Techniques", Prentice Hall.

- 1. Zeigler B.P. Praehofer. H. and Kim I.G. "Theory of modeling and simulation", 2nd Edition. Academic press 2000.
- 2. Robert L. Woods, Kent L. Lawrence, "Modeling and simulation of dynamic systems", Person, 1997.
- 3. Brown, Forbes T. "Engineering System Dynamics", New York, NY: CRC, 2001. ISBN: 9780824706166.
- 4. Pratab.R " Getting started with MATLAB" Oxford university Press 2009.

HUMAN VALUES IN BAUDDHA AND JAIN DARSHAN

Catalogue Description: Bauddha and Jain Darshan form a part of the philosophy of Indian tradition. This course outlines the basic concepts and principles of these two philosophies and provides scope for further reading of the philosophies, so as to gain clarity about the human being, the existence and human participation i.e. human values expressing itself in human conduct.

It is to be kept in mind that Darshan means realization which calls for developing the capacity to see the reality in oneself directly. So, any study of Darshan shall help develop this capacity in the students through proper steps of practices and shall not just provide the information.

	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to Bauddha and Jain Darshan and their Basics Need to study Bauddha and Jain Darshan; the origin of the these philosophies, their basic principles and scope for further reading.	08
Π	Basic Principles of Bauddha Darshan law of impermanence (changability); four noble truths; eightfold path; law of cause- action (pratitya-samutpaad) Definition of some salient words of Buddha Darshan – nirvana, dhamma, tri- ratna(Buddha, Dharma and Sangh), pragya, karma, parmi, ashta-kalap, trishna, shad-ayatan, samvedana, vipassana, anitya, maitri, brham-vihaar, tathagata, arahant	08
III	Purpose and Program for a Human Being based on Bauddha Darshan The purpose and program of a human being living on the basis of it, clarity and practice of human values and human conduct, the natural outcome of such a program on society, nature and tradition. Purpose-freedom from suffering, nirvana; root of suffering- vikaar – raga, dvesha and moha, Progam – various steps of meditation for attaining knowledge; shamath and vipassana; sheel- samadhi-pragya; practice of equanimity (samatva), eightfold path(Ashtang Marg); combination of understanding and practice	08
IV	Basic Principles of Jain Darshan Basic realities – description of nine elements in existence (jeev, ajeev, bandh, punya, paap, aashrav, samvar, nirjara, moksha), 6 dravya of lok – dharma, adhrma, akash, kaal, pudgal, jeev; tri-lakshan, various types of pragya, various stages of realisation; samyak-gyan, samyak- darshan, samyak-charitra, syadvaad, anekantavaad, naya- nishchaya and vyavahar, karma- phal siddhanta Definition of some salient words of Jain Darshan –arhant, jin, tirthankara, panch- parameshthi, atma, pramaan, kaal, pudgal, paramanu, kashay, leshya	08
V	Purpose and Program for a Human Being based on Jain Darshan The purpose and program of a human being living on the basis of it, clarity and practice of human values and human conduct, the natural outcome of such a program on society, nature and tradition, possibility of finding solutions to present day problems in the light of it. Purpose (goal) - moksha, Program- following mahavrat, anuvrat, 10 lakshan dharma; samyak darshan-gyan-charitra. Commonality with Bauddha Darshan	08

1. Chattejee, S.G. and Datta, D.M., "An Introduction to Indian Philosophy", University of Calcutta Press, 1960..

Reference Books:

- 1. "Dhammapad", Vipassana Research Institute, 2001.
- 2. Drukpa, G., "Musings from the Heart", Drukpa Publications Private Ltd, 2018.
- 3. Jyot, "Ek cheez milegi Wonderful", A Film Directed by Jyot Foundation, 2013.
- 4. Goenka, S.N., "The Discourse Summaries", Vipassana Research Institute, 1987.
- 5. Madhavacharya, "Sarva-darshan Samgraha", Chaukhambha Vidya Bhavan, Varanasi, 1984.
- 6. Varni, J., "Samansuttam", Sarva Seva Sangh Prakashan, Varanasi, 7th Edition, 2010.
- https://www.youtube.com/watch?v=cz7QHNvNFfA&list=PLPJVlVRVmhc4Z01fD57j bzycm9I6W054x (English)
- 6. https://www.youtube.com/watch?v=r5bud1ybBDc&list=PLY9hraHvoLQLCkl7Z2DW KMgRAWU77bKFy (Hindi).

HUMAN VALUES IN VEDIC DARŚANA

	Course Outcome (CO)		Bloom's Knowledge Level (KL)
	At the end of course , the sunderstand	student will be able to	
CO1	Students should have knowledge of Vedic Darśana literature and Nyaya Darśana.		
CO2	Students should have knowledge of Vaishes Darśana (Philosophy of Matter)	hik	
CO3	Students should have introductory knowled Sankhya and Yoga Darśana (Philosophy of Spirituality)	ge of	
CO4	Students should have introductory knowled Upanisad and Vedanta Darśana (Philosophy God)	ge of 7 of	
CO5	Students should know the Purpose for a Hu Being based on the Vedic Darśana	man	

CO/PO MAPPING:

CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						1	2	3	1			1		
CO2						1	2	3	1			1		
CO3						1	2	3	1			1		
CO4						1	2	3	1			1		
CO5						1	2	3	1			1		
Target level						1	2	3	1					

	DETAILED SYLLABUS	3-1-0
Unit	Topic	Proposed Lecture

		00
I	Introduction to Vedic Darsana and Nyāya Darsana (Philosophy of Indian Logic and Reasoning) Introduction to Vedic literature, need to study Vedic Darsana; its origin and subject matter. Introduction to Nyāya Darsana, 16 padārthas (pramāņa, prameya, saṃsaya, prayojana, dṛṣṭānta, siddhānta, avayava, tarka, nirṇaya, vāda, jalpa, vitaṇḍā, hetuābhāsa, chala, jāti, nigrahasthāna) paṃcāvayava prakriyā (pratijñā, hetu, udāharaṇa, upanaya, nigamana).	09
П	Vaišesika Darśana (Philosophy of Matter) Introduction to Vaišesika Darśana, definition of Dharma, abhyudaya, niḥśreyasa; 6 padārthas (dravya, guṇa, karma, sāmānya, viśeśa, samavāya) – their definition, characteristics and relationship; nitya-anitya; cause-effect relationships; dṛṣṭa- adṛṣṭa karma phala; mindful dāna; śucitā-aśucitā; reasons of rāga-dveśa, avidyā, sukha-duḥkha, etc. and how to get rid of them.	07
III	Sāmkhya-Yoga Darśana (Philosophy of Spirituality) Sāmkhya Darśana- Puruṣārtha, the nature of Puruṣa and Prakṛti, 24 elements of Prakṛti, bondage and salvation (liberation), the principle of satkāryavāda, triguṇātmaka prakṛti.Yoga Darśana- the steps of Aṣṭāmga yoga (yama, niyama, āsana, prāṇāyāma, pratyāhāra, dhāraṇā, dhyāna and samādhi) and the challenges in following them, afflictions (kleṣa)- avidyā, asmitā, rāga, dveṣa, abhiniveśa, different types of vṛttis (pramāṇa, viparyaya, vikalpa, nidrā, smṛti), the process of nirodha of vṛttis; maitri, karuṇā, muditā, upekṣā; description of yama, niyama, āsana and praṇayāma; kriyāyoga- tapa, svādhyāya and īśvara-praṇidhāna; different steps of samādhi, different types of saṃyama, vivekakhyāti, prajñā. Vedanta Darshan Vedanta Darshan- Nature of Brahma and Prakriti, Methods of Upasana; adhyasaand sanskar; nature of Atma, description of existence, principle of karma- phala, description o pancha kosha, different nature of paramatma/brahma, Ishwar, Four qualifications (Sadhan chatushtay).	12
IV	Upanişad and Vedanta Darśana (Philosophy of God) Introduction to Upanişads and Vedanta Darśana; Īśopanişad – Idea of renouncement, Karma Yoga, balance of Vidyā-Avidyā and Prakrti-Vikrti; Tattirīyopanişad – Different names of the God and their meaning, parting message of Guru to the graduating student (Śikṣāvallī), Nature of Brahma and Prakrti, Methods of Upāsanā; Nature of Ātmā, Description of existence, principle of karma-phala, description of pamca kośa, nature of mukti , process and way to achieve it, antaḥkaraṇa-śuddhi, different characteristics of paramātmā/brahma, Īśvara, Four qualifications (Sādhana-catuṣṭaya)	08
V	Purpose and Program for a Human Being based on the Vedic Darśana The purpose and program of a human being living on the basis of the Vedic Darśana, clarity and practice of human values and human conduct, the natural outcome of such a program on society, nature and tradition. Vedic system of living in a society the idea of vratas and varana (freedom of choice with commitment), Varna	06
	System, Āśrama System, Pamca Mahāyajņa, 16 Saṃskāras, etc.	

Refertence Books:

- 1. Acharya Udayveer Shastri, Sankhya Darshanam (vidyodayaBhashyam), Govindram Hasanand.
- 2. Acharya Rajveer Shastri, Patanjal Yog Darśana Bhashyam, Arsha Sahitya Prachar Trust.
- 3. Acharya Udayveer Shastri, Brahma Sutra (Vedanta Darshanam), Govindram Hasanand.
- Krishna, I. (2010) The SāmkhyaKarika, BharatiyaVidyaPrakashan, 4th edition 5. Madhavacharya, Sarva-DarshanaSamgrah ChaukhambhaVidyabhavan, Varanasi.
- 6. Muller, F.M. (1928) The Six Systems of Indian Philosophy, London: Longmans Green and Co. Publication.
- 7. Maharaj O. () PatanjalYogpradeep, Geeta press Gorakhpur
- 8. Vachaspati M. Sankhyatatvakaumudi, Motilal Banarasi Das Publication.
- 9. Shreemad Bhagwat geeta
- 10. Shankaracharya, VivekChoodamani
- 11. Rajyoga, Swami Shivananda
- 12. The Nyāya Sutras of Gotama, Sinha, N. (Ed.). Motilal Banarsidass Publ. (1990).
- Pandit Madanmohan Vidyasagar. Sanskar Samuchaya, Vijaykumar Govindram Hasanand. 1998
- 14. Vedic Vision: Ancient Insights Into Modern Life, Satyavrata Siddhantalankar, Vijay Krishn Lakhanpal, 1999
- 15. Sanskar Chandrika (Hindi), Dayananda Saraswati, and Satyavrata Siddhantalankar. Vijay Krishn Lakhanpal, (1990).
- 16. THE TAITTIRIYA Upanishad, Achari, Sri Rama Ramanuja. (2013).
- 17. Vedic religion: The Taittiriya-Upanishad with the commentaries of Sankaracharya Suresvaracharya and Sayana (Vidyarana). Sastri, A. Mahadeva.(2016).
- 18. Taittiriyopanishad Sankara Bhashya With Hindi Translation Gita Press 1936.
- Gautama's Nyāyasūtras: With Vātsyāyana-Bhāşya. Jha, Ganganatha, ed. Oriental Book Agency, 1939.
- 20. NyayaDarshnam, Acharya Udayveer Shastri, Vijaykumar Govindram Hasanand (2018)
- 21. VaisheeshikaDarshanam, Acharya Udayveer Shastri, Vijaykumar Govindram Hasanand (2017)
- 22. Chattejee, S.G. and Datta, D.M. (1960) An Introduction to Indian Philosophy, Calcutta: University of Calcutta Press.
- A Foundation Course in Human Values and Profession Ethics (Text Book and Teachers' Manual), R. R. Gaur, R. Asthana, G. P. Bagaria (2019 Second Revised Edition), Excel Books, New Delhi [ISBN 978-93-87034-47-1].
- 24. Class notes on "Human Values in Vedic Darśana" available on www.uhv.org.in
- 25. PPTs for "Human Values in Vedic Darśana" available on www.uhv.org.in